TY - JOUR
T1 - Glucosidase and mannosidase inhibitors mediate increased secretion of mutant α1 antitrypsin Z
AU - Marcus, Nancy Y.
AU - Perlmutter, David H.
PY - 2000/1/21
Y1 - 2000/1/21
N2 - It is now well known that the addition and trimming of oligosaccharide side chains during post-translational modification play an important role in determining the fate of secretory, membrane, and lysosomal glycoproteins. Recent studies have suggested that trimming of oligosaccharide side chains also plays a role in the degradation of misfolded glycoproteins as a part of the quality control mechanism of the endoplasmic reticulum (ER). In this study, we examined the effect of several inhibitors of carbohydrate processing on the fate of the misfolded secretory protein α1 antitrypsin Z. Retention of this misfolded glycoprotein in the ER of liver cells in the classical form of α1 antitrypsin (α1-AT) deficiency is associated with severe liver injury and hepatocellular carcinoma and lack of its secretion is associated with destructive lung disease/emphysema. The results show marked alterations in the fate of α1 antitrypsin Z (α1-ATZ). Indeed, one glucosidase inhibitor, castanospermine (CST), and two mannosidase inhibitors, kifunensine (KIF) and deoxymannojirimycin (DMJ), mediate marked increases in secretion of α1-ATZ by distinct mechanisms. The effects of these inhibitors on secretion have interesting implications for our understanding of the quality control apparatus of the ER. These inhibitors may also constitute models for development of additional drugs for chemoprophylaxis of liver injury and emphysema in patients with α1-AT deficiency.
AB - It is now well known that the addition and trimming of oligosaccharide side chains during post-translational modification play an important role in determining the fate of secretory, membrane, and lysosomal glycoproteins. Recent studies have suggested that trimming of oligosaccharide side chains also plays a role in the degradation of misfolded glycoproteins as a part of the quality control mechanism of the endoplasmic reticulum (ER). In this study, we examined the effect of several inhibitors of carbohydrate processing on the fate of the misfolded secretory protein α1 antitrypsin Z. Retention of this misfolded glycoprotein in the ER of liver cells in the classical form of α1 antitrypsin (α1-AT) deficiency is associated with severe liver injury and hepatocellular carcinoma and lack of its secretion is associated with destructive lung disease/emphysema. The results show marked alterations in the fate of α1 antitrypsin Z (α1-ATZ). Indeed, one glucosidase inhibitor, castanospermine (CST), and two mannosidase inhibitors, kifunensine (KIF) and deoxymannojirimycin (DMJ), mediate marked increases in secretion of α1-ATZ by distinct mechanisms. The effects of these inhibitors on secretion have interesting implications for our understanding of the quality control apparatus of the ER. These inhibitors may also constitute models for development of additional drugs for chemoprophylaxis of liver injury and emphysema in patients with α1-AT deficiency.
UR - http://www.scopus.com/inward/record.url?scp=0034695450&partnerID=8YFLogxK
U2 - 10.1074/jbc.275.3.1987
DO - 10.1074/jbc.275.3.1987
M3 - Article
C2 - 10636901
AN - SCOPUS:0034695450
SN - 0021-9258
VL - 275
SP - 1987
EP - 1992
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 3
ER -