TY - JOUR
T1 - Glucose transport activity in skeletal muscles from transgenic mice overexpressing GLUT1
T2 - Increased basal transport is associated with a defective response to diverse stimuli that activate GLUT4
AU - Gulve, Eric A.
AU - Ren, Jian Ming
AU - Marshall, Bess Adkins
AU - Gao, Jiaping
AU - Hansen, Polly A.
AU - Holloszy, John O.
AU - Mueckler, Mike
PY - 1994/7/15
Y1 - 1994/7/15
N2 - Glucose transport activity was examined in transgenic mice overexpressing the human GLUT1 glucose transporter in skeletal muscles. Basal transport activity measured in vitro with the glucose analog 2-deoxy-D-glucose (1 mM) was increased 2-8-fold in four different muscle preparations. Incubation of muscles from control nontransgenic littermates with a maximally effective concentration of insulin or with insulin-like growth factor-1 resulted in glucose transport rates that were 2-3-fold higher than basal. In contrast, insulin did not stimulate glucose transport activity in three different muscle preparations from transgenic animals; insulin-like growth factor-1 was similarly ineffective. Activation of System A amino acid transport activity (measured with the nonmetabolizable analog α-methylaminoisobutyrate) by insulin was not impaired in muscles from transgenic mice, indicating that the defect does not involve the insulin receptor. In skeletal muscle, glucose transport can be activated by muscle contractions or hypoxia via a pathway separate from that activated by insulin. Incubation of muscles under hypoxic conditions or stimulation of muscles to contract in situ did not increase glucose transport activity in muscles from GLUT1-overexpressing mice, in contrast to the stimulatory effects measured in muscles from control animals. These data suggest that increased glucose flux per se into skeletal muscle results in resistance of GLUT4 to activation by insulin and various other stimuli that activate glucose transport by mechanisms distinct from that of insulin. GLUT1-overexpressing mice thus provide a new model system for studying the effects of glucose-induced resistance to activation of glucose transport.
AB - Glucose transport activity was examined in transgenic mice overexpressing the human GLUT1 glucose transporter in skeletal muscles. Basal transport activity measured in vitro with the glucose analog 2-deoxy-D-glucose (1 mM) was increased 2-8-fold in four different muscle preparations. Incubation of muscles from control nontransgenic littermates with a maximally effective concentration of insulin or with insulin-like growth factor-1 resulted in glucose transport rates that were 2-3-fold higher than basal. In contrast, insulin did not stimulate glucose transport activity in three different muscle preparations from transgenic animals; insulin-like growth factor-1 was similarly ineffective. Activation of System A amino acid transport activity (measured with the nonmetabolizable analog α-methylaminoisobutyrate) by insulin was not impaired in muscles from transgenic mice, indicating that the defect does not involve the insulin receptor. In skeletal muscle, glucose transport can be activated by muscle contractions or hypoxia via a pathway separate from that activated by insulin. Incubation of muscles under hypoxic conditions or stimulation of muscles to contract in situ did not increase glucose transport activity in muscles from GLUT1-overexpressing mice, in contrast to the stimulatory effects measured in muscles from control animals. These data suggest that increased glucose flux per se into skeletal muscle results in resistance of GLUT4 to activation by insulin and various other stimuli that activate glucose transport by mechanisms distinct from that of insulin. GLUT1-overexpressing mice thus provide a new model system for studying the effects of glucose-induced resistance to activation of glucose transport.
UR - http://www.scopus.com/inward/record.url?scp=0028356449&partnerID=8YFLogxK
M3 - Article
C2 - 8034582
AN - SCOPUS:0028356449
SN - 0021-9258
VL - 269
SP - 18366
EP - 18370
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 28
ER -