TY - JOUR
T1 - Ghosts in the machine
T2 - Memory interference from the previous trial
AU - Papadimitriou, Charalampos
AU - Ferdoash, Afreen
AU - Snyder, Lawrence H.
N1 - Publisher Copyright:
© 2015 the American Physiological Society.
PY - 2015/1/15
Y1 - 2015/1/15
N2 - Previous memoranda can interfere with the memorization or storage of new information, a concept known as proactive interference. Studies of proactive interference typically use categorical memoranda and match-to-sample tasks with categorical measures such as the proportion of correct to incorrect responses. In this study we instead train five macaques in a spatial memory task with continuous memoranda and responses, allowing us to more finely probe working memory circuits. We first ask whether the memoranda from the previous trial result in proactive interference in an oculomotor delayed response task. We then characterize the spatial and temporal profile of this interference and ask whether this profile can be predicted by an attractor network model of working memory. We find that memory in the current trial shows a bias toward the location of the memorandum of the previous trial. The magnitude of this bias increases with the duration of the memory period within which it is measured. Our simulations using standard attractor network models of working memory show that these models easily replicate the spatial profile of the bias. However, unlike the behavioral findings, these attractor models show an increase in bias with the duration of the previous rather than the current memory period. To model a bias that increases with current trial duration we posit two separate memory stores, a rapidly decaying visual store that resists proactive interference effects and a sustained memory store that is susceptible to proactive interference.
AB - Previous memoranda can interfere with the memorization or storage of new information, a concept known as proactive interference. Studies of proactive interference typically use categorical memoranda and match-to-sample tasks with categorical measures such as the proportion of correct to incorrect responses. In this study we instead train five macaques in a spatial memory task with continuous memoranda and responses, allowing us to more finely probe working memory circuits. We first ask whether the memoranda from the previous trial result in proactive interference in an oculomotor delayed response task. We then characterize the spatial and temporal profile of this interference and ask whether this profile can be predicted by an attractor network model of working memory. We find that memory in the current trial shows a bias toward the location of the memorandum of the previous trial. The magnitude of this bias increases with the duration of the memory period within which it is measured. Our simulations using standard attractor network models of working memory show that these models easily replicate the spatial profile of the bias. However, unlike the behavioral findings, these attractor models show an increase in bias with the duration of the previous rather than the current memory period. To model a bias that increases with current trial duration we posit two separate memory stores, a rapidly decaying visual store that resists proactive interference effects and a sustained memory store that is susceptible to proactive interference.
KW - Attractor model
KW - Interference
KW - Spatial memory
UR - http://www.scopus.com/inward/record.url?scp=84928237313&partnerID=8YFLogxK
U2 - 10.1152/jn.00402.2014
DO - 10.1152/jn.00402.2014
M3 - Article
C2 - 25376781
AN - SCOPUS:84928237313
SN - 0022-3077
VL - 113
SP - 567
EP - 577
JO - Journal of neurophysiology
JF - Journal of neurophysiology
IS - 2
ER -