Genomic landscape of high-grade meningiomas

Wenya Linda Bi, Noah F. Greenwald, Malak Abedalthagafi, Jeremiah Wala, Will J. Gibson, Pankaj K. Agarwalla, Peleg Horowitz, Steven E. Schumacher, Ekaterina Esaulova, Yu Mei, Aaron Chevalier, Matthew A. Ducar, Aaron R. Thorner, Paul Van Hummelen, Anat O. Stemmer-Rachamimov, Maksym Artyomov, Ossama Al-Mefty, Gavin P. Dunn, Sandro Santagata, Ian F. DunnRameen Beroukhim

Research output: Contribution to journalArticlepeer-review

79 Scopus citations

Abstract

High-grade meningiomas frequently recur and are associated with high rates of morbidity and mortality. To determine the factors that promote the development and evolution of these tumors, we analyzed the genomes of 134 high-grade meningiomas and compared this information with data from 595 previously published meningiomas. High-grade meningiomas had a higher mutation burden than low-grade meningiomas but did not harbor any significantly mutated genes aside from NF2. High-grade meningiomas also possessed significantly elevated rates of chromosomal gains and losses, especially among tumors with monosomy 22. Meningiomas previously treated with adjuvant radiation had significantly more copy number alterations than radiation-induced or radiation-naïve meningiomas. Across serial recurrences, genomic disruption preceded the emergence of nearly all mutations, remained largely uniform across time, and when present in low-grade meningiomas correlated with subsequent progression to a higher grade. In contrast to the largely stable copy number alterations, mutations were strikingly heterogeneous across tumor recurrences, likely due to extensive geographic heterogeneity in the primary tumor. While high-grade meningiomas harbored significantly fewer overtly targetable alterations than low-grade meningiomas, they contained numerous mutations that are predicted to be neoantigens, suggesting that immunologic targeting may be of therapeutic value.

Original languageEnglish
Article number15
Journalnpj Genomic Medicine
Volume2
Issue number1
DOIs
StatePublished - Dec 1 2017

Fingerprint

Dive into the research topics of 'Genomic landscape of high-grade meningiomas'. Together they form a unique fingerprint.

Cite this