TY - JOUR
T1 - Genomic characterization of emerging bacterial uropathogen neisseria meningitidis, which was misidentified as neisseria gonorrhoeae by nucleic acid amplification testing
AU - Sukhum, Kimberley V.
AU - Jean, Sophonie
AU - Wallace, Meghan
AU - Anderson, Neil
AU - Burnham, Carey Ann D.
AU - Dantas, Gautam
N1 - Funding Information:
This work was supported in part by awards to G.D. through the National Institute of Allergy and Infectious Diseases and the Eunice Kennedy Shriver National Institute of Child Health & Human Development of the National Institutes of Health (NIH) under award numbers R01AI123394 and R01HD092414, respectively. K.V.S. is supported by the Society for Healthcare Epidemiology of America Research Scholar Award. The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding agencies.
Publisher Copyright:
Copyright © 2021 American Society for Microbiology. All Rights Reserved.
PY - 2021/2
Y1 - 2021/2
N2 - Neisseria meningitidis and Neisseria gonorrhoeae are pathogenic bacteria that can cause human infections. While N. meningitidis infections are associated with bacterial meningitis and bacteremia, a strain of N. meningitidis, isolated from the urogenital system, has recently been associated with urethritis. As this strain is becoming prominent as an emerging pathogen, it is essential to assess identification tools for N. meningitidis and N. gonorrhoeae urogenital isolates. Consecutive N. meningitidis isolates recovered from urogenital cultures of symptomatic patients with presumptive diagnoses of gonorrhea and a random selection of N. gonorrhoeae isolates recovered from the same population within the same time frame were characterized with routine identification systems, antimicrobial susceptibility testing, and whole-genome sequencing. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), multilocus sequence typing, 16S rRNA gene sequence, and average nucleotide identity methods accurately identified 95% (18/19) of N. meningitidis and N. gonorrhoeae isolates. With the Aptima Combo 2 CT/NG test, 30% (3/10) of N. meningitidis isolates were misidentified as N. gonorrhoeae, but no misidentifications were found with the Xpert CT/NG nucleic acid amplification test (NAAT). Phylogenetic core genome and single nucleotide polymorphism (SNP)-based grouping analyses showed that urogenital N. meningitidis isolates were highly related and phylogenetically distinct from N. gonorrhoeae and respiratory N. meningitidis isolates but similar to urogenital N. meningitidis isolates from patients with urethritis in the United States. Urogenital N. meningitidis isolates were predominantly azithromycin resistant, while N. gonorrhoeae isolates were azithromycin susceptible. These data indicate that urogenital isolates of N. meningitidis can cause false-positive detections with N. gonorrhoeae diagnostic assays. Misidentification of urogenital N. meningitidis isolates may confound public health-related activities for gonorrhea, and future studies are needed to understand the impact on clinical outcome of N. meningitidis urogenital infection.
AB - Neisseria meningitidis and Neisseria gonorrhoeae are pathogenic bacteria that can cause human infections. While N. meningitidis infections are associated with bacterial meningitis and bacteremia, a strain of N. meningitidis, isolated from the urogenital system, has recently been associated with urethritis. As this strain is becoming prominent as an emerging pathogen, it is essential to assess identification tools for N. meningitidis and N. gonorrhoeae urogenital isolates. Consecutive N. meningitidis isolates recovered from urogenital cultures of symptomatic patients with presumptive diagnoses of gonorrhea and a random selection of N. gonorrhoeae isolates recovered from the same population within the same time frame were characterized with routine identification systems, antimicrobial susceptibility testing, and whole-genome sequencing. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), multilocus sequence typing, 16S rRNA gene sequence, and average nucleotide identity methods accurately identified 95% (18/19) of N. meningitidis and N. gonorrhoeae isolates. With the Aptima Combo 2 CT/NG test, 30% (3/10) of N. meningitidis isolates were misidentified as N. gonorrhoeae, but no misidentifications were found with the Xpert CT/NG nucleic acid amplification test (NAAT). Phylogenetic core genome and single nucleotide polymorphism (SNP)-based grouping analyses showed that urogenital N. meningitidis isolates were highly related and phylogenetically distinct from N. gonorrhoeae and respiratory N. meningitidis isolates but similar to urogenital N. meningitidis isolates from patients with urethritis in the United States. Urogenital N. meningitidis isolates were predominantly azithromycin resistant, while N. gonorrhoeae isolates were azithromycin susceptible. These data indicate that urogenital isolates of N. meningitidis can cause false-positive detections with N. gonorrhoeae diagnostic assays. Misidentification of urogenital N. meningitidis isolates may confound public health-related activities for gonorrhea, and future studies are needed to understand the impact on clinical outcome of N. meningitidis urogenital infection.
KW - Antibiotic resistance
KW - Neisseria
KW - Urethritis
KW - Whole-genome sequencing
UR - http://www.scopus.com/inward/record.url?scp=85099962882&partnerID=8YFLogxK
U2 - 10.1128/JCM.01699-20
DO - 10.1128/JCM.01699-20
M3 - Article
C2 - 33177123
AN - SCOPUS:85099962882
VL - 59
JO - Journal of Clinical Microbiology
JF - Journal of Clinical Microbiology
SN - 0095-1137
IS - 2
M1 - e01699-20
ER -