TY - GEN
T1 - Genome-wide meta-regression of gene-environment interaction
AU - Xu, Xiaoxiao
AU - Shi, Gang
AU - Nehorai, Arye
PY - 2012
Y1 - 2012
N2 - Understanding the effects of gene-environment interaction on complex human diseases or traits in genome-wide association studies (GWAS) can help uncover novel genes and identify environmental hazards that influence only certain genetically susceptible groups. Thus there is a pressing need to develop efficient and powerful interaction analysis methods. In this paper, we propose a novel meta-analysis method of gene-environment interaction, based on meta-regression (MR-M&I). Compared with existing meta-analysis methods, MR-M&I allows for heterogeneity in the environmental factor (E) by dividing the subjects in each study into groups according to the distribution of E. Moreover, it can readily estimate linear or non-linear interactions, and thus it is more generally applicable to different scenarios. We use numerical examples to demonstrate the performance of MR-M&I and compare it with two commonly used methods in current GWAS. The results show that MR-M&I is more powerful than the other methods.
AB - Understanding the effects of gene-environment interaction on complex human diseases or traits in genome-wide association studies (GWAS) can help uncover novel genes and identify environmental hazards that influence only certain genetically susceptible groups. Thus there is a pressing need to develop efficient and powerful interaction analysis methods. In this paper, we propose a novel meta-analysis method of gene-environment interaction, based on meta-regression (MR-M&I). Compared with existing meta-analysis methods, MR-M&I allows for heterogeneity in the environmental factor (E) by dividing the subjects in each study into groups according to the distribution of E. Moreover, it can readily estimate linear or non-linear interactions, and thus it is more generally applicable to different scenarios. We use numerical examples to demonstrate the performance of MR-M&I and compare it with two commonly used methods in current GWAS. The results show that MR-M&I is more powerful than the other methods.
UR - http://www.scopus.com/inward/record.url?scp=84877804276&partnerID=8YFLogxK
U2 - 10.1109/GENSIPS.2012.6507727
DO - 10.1109/GENSIPS.2012.6507727
M3 - Conference contribution
AN - SCOPUS:84877804276
SN - 9781467352369
T3 - Proceedings - IEEE International Workshop on Genomic Signal Processing and Statistics
SP - 62
EP - 65
BT - Proceedings 2012 IEEE International Workshop on Genomic Signal Processing and Statistics, GENSIPS 2012
T2 - 2012 IEEE International Workshop on Genomic Signal Processing and Statistics, GENSIPS 2012
Y2 - 2 December 2012 through 4 December 2012
ER -