TY - JOUR
T1 - Genome-wide distribution of histone H4 Lysine 16 acetylation sites and their relationship to gene expression
AU - Horikoshi, Nobuo
AU - Kumar, Pankaj
AU - Sharma, Girdhar G.
AU - Chen, Min
AU - Hunt, Clayton R.
AU - Westover, Kenneth
AU - Chowdhury, Shantanu
AU - Pandita, Tej K.
PY - 2013/4/12
Y1 - 2013/4/12
N2 - Background: Histone post-translational modifications are critical determinants of chromatin structure and function, impacting multiple biological processes including DNA transcription, replication, and repair. The post-translational acetylation of histone H4 at lysine 16 (H4K16ac) was initially identified in association with dosage compensation of the Drosophila male X chromosome. However, in mammalian cells, H4K16ac is not associated with dosage compensation and the genomic distribution of H4K16ac is not precisely known. Therefore, we have mapped the genome-wide H4K16ac distribution in human cells.Results: We performed H4K16ac chromatin immunoprecipitation from human embryonic kidney 293 (HEK293) cells followed by hybridization to whole-genome tiling arrays and identified 25,893 DNA regions (false discovery rate <0.005) with average length of 692 nucleotides. Interestingly, although a majority of H4K16ac sites localized within genes, only a relatively small fraction (~10%) was found near promoters, in contrast to the distribution of the acetyltransferase, MOF, responsible for acetylation at K16 of H4. Using differential gene expression profiling data, 73 genes (> ±1.5-fold) were identified as potential H4K16ac-regulated genes. Seventeen transcription factor-binding sites were significantly associated with H4K16ac occupancy (p < 0.0005). In addition, a consensus 12-nucleotide guanine-rich sequence motif was identified in more than 55% of the H4K16ac peaks.Conclusions: The results suggest that H4K16 acetylation has a limited effect on transcription regulation in HEK293 cells, whereas H4K16ac has been demonstrated to have critical roles in regulating transcription in mouse embryonic stem cells. Thus, H4K16ac-dependent transcription regulation is likely a cell type specific process.
AB - Background: Histone post-translational modifications are critical determinants of chromatin structure and function, impacting multiple biological processes including DNA transcription, replication, and repair. The post-translational acetylation of histone H4 at lysine 16 (H4K16ac) was initially identified in association with dosage compensation of the Drosophila male X chromosome. However, in mammalian cells, H4K16ac is not associated with dosage compensation and the genomic distribution of H4K16ac is not precisely known. Therefore, we have mapped the genome-wide H4K16ac distribution in human cells.Results: We performed H4K16ac chromatin immunoprecipitation from human embryonic kidney 293 (HEK293) cells followed by hybridization to whole-genome tiling arrays and identified 25,893 DNA regions (false discovery rate <0.005) with average length of 692 nucleotides. Interestingly, although a majority of H4K16ac sites localized within genes, only a relatively small fraction (~10%) was found near promoters, in contrast to the distribution of the acetyltransferase, MOF, responsible for acetylation at K16 of H4. Using differential gene expression profiling data, 73 genes (> ±1.5-fold) were identified as potential H4K16ac-regulated genes. Seventeen transcription factor-binding sites were significantly associated with H4K16ac occupancy (p < 0.0005). In addition, a consensus 12-nucleotide guanine-rich sequence motif was identified in more than 55% of the H4K16ac peaks.Conclusions: The results suggest that H4K16 acetylation has a limited effect on transcription regulation in HEK293 cells, whereas H4K16ac has been demonstrated to have critical roles in regulating transcription in mouse embryonic stem cells. Thus, H4K16ac-dependent transcription regulation is likely a cell type specific process.
KW - Gene expression
KW - Genome
KW - H4K16ac
UR - http://www.scopus.com/inward/record.url?scp=84878397061&partnerID=8YFLogxK
U2 - 10.1186/2041-9414-4-3
DO - 10.1186/2041-9414-4-3
M3 - Article
C2 - 23587301
AN - SCOPUS:84878397061
SN - 2041-9414
VL - 4
JO - Genome Integrity
JF - Genome Integrity
IS - 1
M1 - 3
ER -