TY - JOUR
T1 - Genome-wide association meta-analysis of nicotine metabolism and cigarette consumption measures in smokers of European descent
AU - Buchwald, Jadwiga
AU - Chenoweth, Meghan J.
AU - Palviainen, Teemu
AU - Zhu, Gu
AU - Benner, Christian
AU - Gordon, Scott
AU - Korhonen, Tellervo
AU - Ripatti, Samuli
AU - Madden, Pamela A.F.
AU - Lehtimäki, Terho
AU - Raitakari, Olli T.
AU - Salomaa, Veikko
AU - Rose, Richard J.
AU - George, Tony P.
AU - Lerman, Caryn
AU - Pirinen, Matti
AU - Martin, Nicholas G.
AU - Kaprio, Jaakko
AU - Loukola, Anu
AU - Tyndale, Rachel F.
N1 - Funding Information:
126925/121584/124282/129378/117787/41071/265240/263278), Finnish Foundation for Cardiovascular Research, Sigrid Juselius Foundation, University of Helsinki HiLIFE Fellow grant, Social Insurance Institution of Finland, Competitive State Research Financing of the Expert Responsibility area of Kuopio, Tampere and Turku University Hospitals (grant X51001), Juho Vainio Foundation, Paavo Nurmi Foundation, Finnish Cultural Foundation, Tampere Tuberculosis Foundation, Emil Aaltonen Foundation, Yrjö Jahnsson Foundation, Signe and Ane Gyllenberg Foundation, Diabetes Research Foundation of Finnish Diabetes Association, EU Horizon 2020 (755320), European Research Council (742927), Tampere University Hospital Supporting Foundation, Doctoral Program in Population Health (University of Helsinki), Finnish Research Foundation of the Pulmonary Diseases, Biomedicum Helsinki Foundation, and the Cancer Foundation Finland. We thank Dr Aino Kankaanpää, Maria Novalen, Leanne McNeill, and Tabatha Goncalves for laboratory work.
Funding Information:
Acknowledgements This work is supported by the NIH (PGRN grant DA020830 and CA197461), CIHR (FDN-154294 and PJY-159710), a Canada Research Chair, Wellcome Trust Sanger Institute, Broad Institute, European Network for Genetic and Genomic Epidemiology, FP7-HEALTH-F4-2007, grant agreement number 201413, NIAAA (AA-12502/AA-00145/AA-09203/AA15416/K02AA018755), the Academy of Finland (100499/205585/118555/141054/264146/ 308248/312073/288509/312076/285380/312062/286284/134309/
Publisher Copyright:
© 2020, The Author(s), under exclusive licence to Springer Nature Limited.
PY - 2021/6
Y1 - 2021/6
N2 - Smoking behaviors, including amount smoked, smoking cessation, and tobacco-related diseases, are altered by the rate of nicotine clearance. Nicotine clearance can be estimated using the nicotine metabolite ratio (NMR) (ratio of 3′hydroxycotinine/cotinine), but only in current smokers. Advancing the genomics of this highly heritable biomarker of CYP2A6, the main metabolic enzyme for nicotine, will also enable investigation of never and former smokers. We performed the largest genome-wide association study (GWAS) to date of the NMR in European ancestry current smokers (n = 5185), found 1255 genome-wide significant variants, and replicated the chromosome 19 locus. Fine-mapping of chromosome 19 revealed 13 putatively causal variants, with nine of these being highly putatively causal and mapping to CYP2A6, MAP3K10, ADCK4, and CYP2B6. We also identified a putatively causal variant on chromosome 4 mapping to TMPRSS11E and demonstrated an association between TMPRSS11E variation and a UGT2B17 activity phenotype. Together the 14 putatively causal SNPs explained ~38% of NMR variation, a substantial increase from the ~20 to 30% previously explained. Our additional GWASs of nicotine intake biomarkers showed that cotinine and smoking intensity (cotinine/cigarettes per day (CPD)) shared chromosome 19 and chromosome 4 loci with the NMR, and that cotinine and a more accurate biomarker, cotinine + 3′hydroxycotinine, shared a chromosome 15 locus near CHRNA5 with CPD and Pack-Years (i.e., cumulative exposure). Understanding the genetic factors influencing smoking-related traits facilitates epidemiological studies of smoking and disease, as well as assists in optimizing smoking cessation support, which in turn will reduce the enormous personal and societal costs associated with smoking.
AB - Smoking behaviors, including amount smoked, smoking cessation, and tobacco-related diseases, are altered by the rate of nicotine clearance. Nicotine clearance can be estimated using the nicotine metabolite ratio (NMR) (ratio of 3′hydroxycotinine/cotinine), but only in current smokers. Advancing the genomics of this highly heritable biomarker of CYP2A6, the main metabolic enzyme for nicotine, will also enable investigation of never and former smokers. We performed the largest genome-wide association study (GWAS) to date of the NMR in European ancestry current smokers (n = 5185), found 1255 genome-wide significant variants, and replicated the chromosome 19 locus. Fine-mapping of chromosome 19 revealed 13 putatively causal variants, with nine of these being highly putatively causal and mapping to CYP2A6, MAP3K10, ADCK4, and CYP2B6. We also identified a putatively causal variant on chromosome 4 mapping to TMPRSS11E and demonstrated an association between TMPRSS11E variation and a UGT2B17 activity phenotype. Together the 14 putatively causal SNPs explained ~38% of NMR variation, a substantial increase from the ~20 to 30% previously explained. Our additional GWASs of nicotine intake biomarkers showed that cotinine and smoking intensity (cotinine/cigarettes per day (CPD)) shared chromosome 19 and chromosome 4 loci with the NMR, and that cotinine and a more accurate biomarker, cotinine + 3′hydroxycotinine, shared a chromosome 15 locus near CHRNA5 with CPD and Pack-Years (i.e., cumulative exposure). Understanding the genetic factors influencing smoking-related traits facilitates epidemiological studies of smoking and disease, as well as assists in optimizing smoking cessation support, which in turn will reduce the enormous personal and societal costs associated with smoking.
UR - http://www.scopus.com/inward/record.url?scp=85081703145&partnerID=8YFLogxK
U2 - 10.1038/s41380-020-0702-z
DO - 10.1038/s41380-020-0702-z
M3 - Article
C2 - 32157176
AN - SCOPUS:85081703145
SN - 1359-4184
VL - 26
SP - 2212
EP - 2223
JO - Molecular Psychiatry
JF - Molecular Psychiatry
IS - 6
ER -