Abstract
A previous paper in this series reported that genetic factors play a major role in the familial transmission of plasma (P) and red blood cell (RBC) magnesium (Mg) concentrations. We report here the results of commingling analysis based on a random sample of unrelated individuals, and complex segregation analysis of a random sample of nuclear families. For RBC Mg, there is evidence for a mixture of two distributions, but not for three. For p Mg, there is no evidence for commingling. Complex segregation analysis under a mixed model yielded significant support for a major gene effect on RBC Mg, but not on P Mg. Parameter estimates indicated that the data are compatible with a rather common major gene (q = .23) for elevated RBC Mg, roughly 5% of the population being homozygotes for this gene, that the nonfamilial factors account for a small fraction of the total variance, and that the overlap of distributions of homozygotes is not large.
Original language | English |
---|---|
Pages (from-to) | 938-950 |
Number of pages | 13 |
Journal | American journal of human genetics |
Volume | 35 |
Issue number | 5 |
State | Published - 1983 |