TY - JOUR
T1 - Genetic Pleiotropy Between Pulmonary Function and Age-RelatedTraits:The Long Life Family Study
AU - Feitosa, Mary F.
AU - Wojczynski, Mary K.
AU - Anema, Jason A.
AU - WarwickDaw, E.
AU - Wang, Lihua
AU - Santanasto, Adam J.
AU - Nygaard, Marianne
AU - Province, Michael A.
N1 - Publisher Copyright:
© The Author(s) 2022. Published by Oxford University Press on behalf of The Gerontological Society of America.
PY - 2024/3/1
Y1 - 2024/3/1
N2 - Background: Pulmonary function (PF) progressively declines with aging. Forced expiratory volume in the first second (FEV1) and forced vital capacity (FVC) are predictors of morbidity of pulmonary and cardiovascular diseases and all-cause mortality. In addition, reduced PF is associated with elevated chronic low-grade systemic inflammation, glucose metabolism, body fatness, and low muscle strength. It may suggest pleiotropic genetic effects between PF with these age-related factors. Methods: We evaluated whether FEV1 and FVC share common pleiotropic genetic effects with interleukin-6, high-sensitivity C-reactive protein, body mass index, muscle (grip) strength, plasma glucose, and glycosylated hemoglobin in 3 888 individuals (age range: 26–106). We employed sex-combined and sex-specific correlated meta-analyses to test whether combining genome-wide association p values from 2 or more traits enhances the ability to detect variants sharing effects on these correlated traits. Results: We identified 32 loci for PF, including 29 novel pleiotropic loci associated with PF and (i) body fatness (CYP2U1/SGMS2), (ii) glucose metabolism (CBWD1/DOCK8 and MMUT/CENPQ), (iii) inflammatory markers (GLRA3/HPGD, TRIM9, CALN1, CTNNB1/ZNF621, GATA5/SLCO4A1/NTSR1, and NPVF/C7orf31/CYCS), and (iv) muscle strength (MAL2, AC008825.1/LINC02103, AL136418.1). Conclusions: The identified genes/loci for PF and age-related traits suggest their underlying shared genetic effects, which can explain part of their phenotypic correlations. Integration of gene expression and genomic annotation data shows enrichment of our genetic variants in lung, blood, adipose, pancreas, and muscles, among others. Our findings highlight the critical roles of identified gene/locus in systemic inflammation, glucose metabolism, strength performance, PF, and pulmonary disease, which are involved in accelerated biological aging.
AB - Background: Pulmonary function (PF) progressively declines with aging. Forced expiratory volume in the first second (FEV1) and forced vital capacity (FVC) are predictors of morbidity of pulmonary and cardiovascular diseases and all-cause mortality. In addition, reduced PF is associated with elevated chronic low-grade systemic inflammation, glucose metabolism, body fatness, and low muscle strength. It may suggest pleiotropic genetic effects between PF with these age-related factors. Methods: We evaluated whether FEV1 and FVC share common pleiotropic genetic effects with interleukin-6, high-sensitivity C-reactive protein, body mass index, muscle (grip) strength, plasma glucose, and glycosylated hemoglobin in 3 888 individuals (age range: 26–106). We employed sex-combined and sex-specific correlated meta-analyses to test whether combining genome-wide association p values from 2 or more traits enhances the ability to detect variants sharing effects on these correlated traits. Results: We identified 32 loci for PF, including 29 novel pleiotropic loci associated with PF and (i) body fatness (CYP2U1/SGMS2), (ii) glucose metabolism (CBWD1/DOCK8 and MMUT/CENPQ), (iii) inflammatory markers (GLRA3/HPGD, TRIM9, CALN1, CTNNB1/ZNF621, GATA5/SLCO4A1/NTSR1, and NPVF/C7orf31/CYCS), and (iv) muscle strength (MAL2, AC008825.1/LINC02103, AL136418.1). Conclusions: The identified genes/loci for PF and age-related traits suggest their underlying shared genetic effects, which can explain part of their phenotypic correlations. Integration of gene expression and genomic annotation data shows enrichment of our genetic variants in lung, blood, adipose, pancreas, and muscles, among others. Our findings highlight the critical roles of identified gene/locus in systemic inflammation, glucose metabolism, strength performance, PF, and pulmonary disease, which are involved in accelerated biological aging.
KW - Functional genome annotations
KW - Inflammation
KW - Longevity
KW - Muscle
KW - Obesity
UR - http://www.scopus.com/inward/record.url?scp=85178579671&partnerID=8YFLogxK
U2 - 10.1093/gerona/glac046
DO - 10.1093/gerona/glac046
M3 - Article
C2 - 35180297
AN - SCOPUS:85178579671
SN - 1079-5006
VL - 79
JO - Journals of Gerontology - Series A Biological Sciences and Medical Sciences
JF - Journals of Gerontology - Series A Biological Sciences and Medical Sciences
IS - 3
M1 - glac046
ER -