TY - JOUR
T1 - Genetic loci that regulate ectopic calcification in response to knee trauma in LG/J by SM/J advanced intercross mice
AU - Rai, Muhammad Farooq
AU - Schmidt, Eric J.
AU - Hashimoto, Shingo
AU - Cheverud, James M.
AU - Sandell, Linda J.
N1 - Publisher Copyright:
© 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
PY - 2015/10/1
Y1 - 2015/10/1
N2 - This study reports on genetic susceptibility to ectopic calcification in the LG/J and SM/J advanced intercross mice. Using 347 mice in 98 full-sibships, destabilization of medial meniscus (DMM) was performed to induce joint injury. We found that joint destabilization instigated ectopic calcifications as detected and quantified by micro-CT. We performed quantitative trait locus (QTL) analysis to map ectopic calcification phenotypes to discrete genomic locations. To validate the functional significance of the selected QTL candidate genes, we compared mRNA expression between parental LG/J and SM/J inbred strains. Overall, we detected 20 QTLs affecting synovial and meniscus calcification phenotypes with 11 QTLs linked to synovial calcification. Functional and bioinformatic analyses of single nucleotide polymorphism (SNP) identified functional classifications relevant to angiogenesis (Myo1e, Kif26b, Nprl3, Stab2, Fam105b), bone metabolism/calcification (Tle3, Tgfb2, Lipc, Nfe2l1, Ank, Fam105b), arthritis (Stab2, Tbx21, Map4k4, Hoxb9, Larp6, Col1a2, Adam10, Timp3, Nfe2l1, Trpm3), and ankylosing-spondylitis (Ank, Pon1, Il1r2, Tbkbp1) indicating that ectopic calcification involves multiple mechanisms. Furthermore, the expression of 11 out of 78 candidate genes was significantly different between LG/J and SM/J. Correlation analysis showed that Aff3, Fam81a, Syn3, and Ank were correlated with synovial calcification. Taken together, our findings of multiple genetic loci suggest the involvement of multiple genes contributing to ectopic calcification.
AB - This study reports on genetic susceptibility to ectopic calcification in the LG/J and SM/J advanced intercross mice. Using 347 mice in 98 full-sibships, destabilization of medial meniscus (DMM) was performed to induce joint injury. We found that joint destabilization instigated ectopic calcifications as detected and quantified by micro-CT. We performed quantitative trait locus (QTL) analysis to map ectopic calcification phenotypes to discrete genomic locations. To validate the functional significance of the selected QTL candidate genes, we compared mRNA expression between parental LG/J and SM/J inbred strains. Overall, we detected 20 QTLs affecting synovial and meniscus calcification phenotypes with 11 QTLs linked to synovial calcification. Functional and bioinformatic analyses of single nucleotide polymorphism (SNP) identified functional classifications relevant to angiogenesis (Myo1e, Kif26b, Nprl3, Stab2, Fam105b), bone metabolism/calcification (Tle3, Tgfb2, Lipc, Nfe2l1, Ank, Fam105b), arthritis (Stab2, Tbx21, Map4k4, Hoxb9, Larp6, Col1a2, Adam10, Timp3, Nfe2l1, Trpm3), and ankylosing-spondylitis (Ank, Pon1, Il1r2, Tbkbp1) indicating that ectopic calcification involves multiple mechanisms. Furthermore, the expression of 11 out of 78 candidate genes was significantly different between LG/J and SM/J. Correlation analysis showed that Aff3, Fam81a, Syn3, and Ank were correlated with synovial calcification. Taken together, our findings of multiple genetic loci suggest the involvement of multiple genes contributing to ectopic calcification.
KW - QTL analysis
KW - advanced intercross line
KW - ectopic calcification
KW - gene expression
KW - genetics
KW - osteoarthritis
UR - http://www.scopus.com/inward/record.url?scp=84940459119&partnerID=8YFLogxK
U2 - 10.1002/jor.22944
DO - 10.1002/jor.22944
M3 - Article
C2 - 25989359
AN - SCOPUS:84940459119
SN - 0736-0266
VL - 33
SP - 1412
EP - 1423
JO - Journal of Orthopaedic Research
JF - Journal of Orthopaedic Research
IS - 10
ER -