Generation of Human Striatal Neurons by MicroRNA-Dependent Direct Conversion of Fibroblasts

Matheus B. Victor, Michelle Richner, Tracey O. Hermanstyne, Joseph L. Ransdell, Courtney Sobieski, Pan Yue Deng, Vitaly A. Klyachko, Jeanne M. Nerbonne, Andrew S. Yoo

Research output: Contribution to journalArticlepeer-review

154 Scopus citations


The promise of using reprogrammed human neurons for disease modeling and regenerative medicine relies on the ability to induce patient-derived neurons with high efficiency and subtype specificity. We have previously shown that ectopic expression of brain-enriched microRNAs (miRNAs), miR-9/9* and miR-124 (miR-9/9*-124), promoted direct conversion of human fibroblasts into neurons. Here we show that coexpression of miR-9/9*-124 with transcription factors enriched in the developing striatum, BCL11B (also known as CTIP2), DLX1, DLX2, and MYT1L, can guide the conversion of human postnatal and adult fibroblasts into an enriched population of neurons analogous to striatal medium spiny neurons (MSNs). When transplanted in the mouse brain, the reprogrammed human cells persisted insitu for over 6months, exhibited membrane properties equivalent to native MSNs, and extended projections to the anatomical targets of MSNs. These findings highlight the potential of exploiting the synergism between miR-9/9*-124 and transcription factors to generate specific neuronal subtypes.

Original languageEnglish
Pages (from-to)311-323
Number of pages13
Issue number2
StatePublished - Oct 22 2014

Fingerprint Dive into the research topics of 'Generation of Human Striatal Neurons by MicroRNA-Dependent Direct Conversion of Fibroblasts'. Together they form a unique fingerprint.

Cite this