TY - JOUR
T1 - Generation of human monoclonal antibodies reactive with cellular antigens
AU - Cote, R. J.
AU - Morrissey, D. M.
AU - Houghton, A. N.
AU - Beattie, E. J.
AU - Oettgen, H. F.
AU - Old, L. J.
PY - 1983
Y1 - 1983
N2 - Human lymphocytes from lymph node, peripheral blood, spleen, and tumor specimens have been fused with the LICR-LON-HMy2 (LICR-2) or SKO-007 human cell lines or the NS-1 mouse myeloma line. Over 75 fusions with the three myeloma-lymphoblastoid lines have been performed. Several factors appeared to improve the fusion outcome, including maintenance of the myeloma-lymphoblastoid lines in logarithmic phase growth at ≥ 95% viability, a delay of 24 hr in the introduction of aminopterin to the fused cells, and preselection of the fetal calf serum used in the medium. For a given number of lymphocytes, fusions with NS-1 produced 5-20 times more clones than fusions with LICR-2 or SKO-007, and LICR-2 produced 4 times as many clones as SKO-007. The percentage of clones secreting human immunoglobulin, the range of immunoglobulin production, and the proportion of IgM, IgA, and IgG secretors were comparable for clones derived from the three myeloma-lymphoblastoid lines. Stable Ig-secreting clones were isolated with approximately equal frequency from LICR-2 and NS-1 fusions. A number of stable clones producing human monoclonal antibodies reacting with cell-surface, cytoplasmic, or nuclear antigens have been isolated from tumor-bearing patients and normal individuals. A surface antigenic system present on normal and malignant cells has been defined with a human monoclonal antibody derived from a patient with breast cancer. Techniques for producing human monoclonal antibody now appear to be sufficiently advanced to initiate a serological dissection of the humoral immune response to cancer.
AB - Human lymphocytes from lymph node, peripheral blood, spleen, and tumor specimens have been fused with the LICR-LON-HMy2 (LICR-2) or SKO-007 human cell lines or the NS-1 mouse myeloma line. Over 75 fusions with the three myeloma-lymphoblastoid lines have been performed. Several factors appeared to improve the fusion outcome, including maintenance of the myeloma-lymphoblastoid lines in logarithmic phase growth at ≥ 95% viability, a delay of 24 hr in the introduction of aminopterin to the fused cells, and preselection of the fetal calf serum used in the medium. For a given number of lymphocytes, fusions with NS-1 produced 5-20 times more clones than fusions with LICR-2 or SKO-007, and LICR-2 produced 4 times as many clones as SKO-007. The percentage of clones secreting human immunoglobulin, the range of immunoglobulin production, and the proportion of IgM, IgA, and IgG secretors were comparable for clones derived from the three myeloma-lymphoblastoid lines. Stable Ig-secreting clones were isolated with approximately equal frequency from LICR-2 and NS-1 fusions. A number of stable clones producing human monoclonal antibodies reacting with cell-surface, cytoplasmic, or nuclear antigens have been isolated from tumor-bearing patients and normal individuals. A surface antigenic system present on normal and malignant cells has been defined with a human monoclonal antibody derived from a patient with breast cancer. Techniques for producing human monoclonal antibody now appear to be sufficiently advanced to initiate a serological dissection of the humoral immune response to cancer.
UR - http://www.scopus.com/inward/record.url?scp=0020526392&partnerID=8YFLogxK
U2 - 10.1073/pnas.80.7.2026
DO - 10.1073/pnas.80.7.2026
M3 - Article
C2 - 6572959
AN - SCOPUS:0020526392
VL - 80
SP - 2026
EP - 2030
JO - Unknown Journal
JF - Unknown Journal
IS - 7 I
ER -