TY - JOUR
T1 - General approach for engineering small-molecule-binding DNA split aptamers
AU - Kent, Alexandra D.
AU - Spiropulos, Nicholas G.
AU - Heemstra, Jennifer M.
PY - 2013/10/15
Y1 - 2013/10/15
N2 - Here we report a general method for engineering three-way junction DNA aptamers into split aptamers. Split aptamers show significant potential for use as recognition elements in biosensing applications, but reliable methods for generating these sequences are currently lacking. We hypothesize that the three-way junction is a "privileged architecture" for the elaboration of aptamers into split aptamers, as it provides two potential splitting sites that are distal from the target binding pocket. We propose a general method for split aptamer engineering that involves removing one loop region, then systematically modifying the number of base pairs in the remaining stem regions in order to achieve selective assembly only in the presence of the target small molecule. We screen putative split aptamer sequence pairs using split aptamer proximity ligation (StAPL) technology developed by our laboratory, but we validate that the results obtained using StAPL translate directly to systems in which the aptamer fragments are assembling noncovalently. We introduce four new split aptamer sequences, which triples the number of small-molecule-binding DNA split aptamers reported to date, and the methods described herein provide a reliable route for the engineering of additional split aptamers, dramatically advancing the potential substrate scope of DNA assembly based biosensors.
AB - Here we report a general method for engineering three-way junction DNA aptamers into split aptamers. Split aptamers show significant potential for use as recognition elements in biosensing applications, but reliable methods for generating these sequences are currently lacking. We hypothesize that the three-way junction is a "privileged architecture" for the elaboration of aptamers into split aptamers, as it provides two potential splitting sites that are distal from the target binding pocket. We propose a general method for split aptamer engineering that involves removing one loop region, then systematically modifying the number of base pairs in the remaining stem regions in order to achieve selective assembly only in the presence of the target small molecule. We screen putative split aptamer sequence pairs using split aptamer proximity ligation (StAPL) technology developed by our laboratory, but we validate that the results obtained using StAPL translate directly to systems in which the aptamer fragments are assembling noncovalently. We introduce four new split aptamer sequences, which triples the number of small-molecule-binding DNA split aptamers reported to date, and the methods described herein provide a reliable route for the engineering of additional split aptamers, dramatically advancing the potential substrate scope of DNA assembly based biosensors.
UR - http://www.scopus.com/inward/record.url?scp=84886918180&partnerID=8YFLogxK
U2 - 10.1021/ac402500n
DO - 10.1021/ac402500n
M3 - Article
C2 - 24033257
AN - SCOPUS:84886918180
SN - 0003-2700
VL - 85
SP - 9916
EP - 9923
JO - Analytical Chemistry
JF - Analytical Chemistry
IS - 20
ER -