TY - JOUR
T1 - Gas-phase stability of double-stranded oligodeoxynucleotides and their noncovalent complexes with DNA-binding drugs as revealed by collisional activation in an ion trap
AU - Wan, Katty X.
AU - Gross, Michael L.
AU - Shibue, Toshimichi
N1 - Funding Information:
This work was supported by the National Institutes of Health, National Center for Research Resources (grant no. 2P41RR00954), and by NIH grant no. P01CA49210.
PY - 2000
Y1 - 2000
N2 - The intrinsic (gas-phase) stabilities of duplex, self-complementary oligonucleotides were measured in a relative way by subjecting the duplex precursor ions to increasing amounts of collision energy during the collisional-activated decomposition (CAD) events in an ion-trap mass spectrometer. The results are displayed as a dissociation profile, an s-shaped curve that shows the dependence of the relative abundance of the duplex on the applied collision energy. The total number of charges, the total number of base pairs, and the location of the high proton-affinity bases (i.e., G and C) are the main factors that affect the intrinsic stability of the duplex oligonucleotides. If the charge state is the same, the stability, as measured as a half-wave collision energy, E1/2, correlates well with the total number of H bonds for the duplex. The intrinsic stabilities of noncovalent complexes between duplex oligonucleotide and some DNA-binding drugs were also measured by using the newly developed method. Although duplexes are stabilized in the gas phase when they bind to drug molecules, correlations between gas-phase stabilities and the solution-binding affinities have not yet been obtained. Complexes in which the drug is bound in the minor groove must be joined tightly because they tend to dissociate in the gas phase by breaking covalent bonds of the oligonucleotide to give base loss and small sequence-ion formation. Complexes in which the drug is known to favor intercalation dissociate by breaking weak, noncovalent bonds to form single-stranded oligonucleotides although cleavage of covalent bonds of the oligonucleotide also occurs.
AB - The intrinsic (gas-phase) stabilities of duplex, self-complementary oligonucleotides were measured in a relative way by subjecting the duplex precursor ions to increasing amounts of collision energy during the collisional-activated decomposition (CAD) events in an ion-trap mass spectrometer. The results are displayed as a dissociation profile, an s-shaped curve that shows the dependence of the relative abundance of the duplex on the applied collision energy. The total number of charges, the total number of base pairs, and the location of the high proton-affinity bases (i.e., G and C) are the main factors that affect the intrinsic stability of the duplex oligonucleotides. If the charge state is the same, the stability, as measured as a half-wave collision energy, E1/2, correlates well with the total number of H bonds for the duplex. The intrinsic stabilities of noncovalent complexes between duplex oligonucleotide and some DNA-binding drugs were also measured by using the newly developed method. Although duplexes are stabilized in the gas phase when they bind to drug molecules, correlations between gas-phase stabilities and the solution-binding affinities have not yet been obtained. Complexes in which the drug is bound in the minor groove must be joined tightly because they tend to dissociate in the gas phase by breaking covalent bonds of the oligonucleotide to give base loss and small sequence-ion formation. Complexes in which the drug is known to favor intercalation dissociate by breaking weak, noncovalent bonds to form single-stranded oligonucleotides although cleavage of covalent bonds of the oligonucleotide also occurs.
UR - http://www.scopus.com/inward/record.url?scp=0034478602&partnerID=8YFLogxK
U2 - 10.1016/S1044-0305(00)00095-7
DO - 10.1016/S1044-0305(00)00095-7
M3 - Article
C2 - 10790849
AN - SCOPUS:0034478602
SN - 1044-0305
VL - 11
SP - 450
EP - 457
JO - Journal of the American Society for Mass Spectrometry
JF - Journal of the American Society for Mass Spectrometry
IS - 5
ER -