TY - JOUR
T1 - Gap junctions and other mechanisms of cell-cell communication regulate basal insulin secretion in the pancreatic islet
AU - Benninger, R. K.P.
AU - Head, W. Steven
AU - Zhang, Min
AU - Satin, Leslie S.
AU - Piston, David W.
PY - 2011/11
Y1 - 2011/11
N2 - Cell-cell communication in the islet of Langerhans is important for the regulation of insulin secretion. Gap-junctions coordinate oscillations in intracellular free-calcium ([Ca 2+] i) and insulin secretion in the islet following elevated glucose. Gap-junctions can also ensure that oscillatory [Ca 2+] i ceases when glucose is at a basal levels. We determine the roles of gap-junctions and other cell-cell communication pathways in the suppression of insulin secretion under basal conditions. Metabolic, electrical and insulin secretion levels were measured from islets lacking gap-junction coupling following deletion of connexion36 (Cx36 -/-), and these results were compared to those obtained using fully isolated β-cells. K ATP loss-of-function islets provide a further experimental model to specifically study gap-junction mediated suppression of electrical activity. In isolated β-cells or Cx36 -/- islets, elevations in [Ca 2+] i persisted in a subset of cells even at basal glucose. Isolated β-cells showed elevated insulin secretion at basal glucose; however, insulin secretion from Cx36 -/- islets was minimally altered. [Ca 2+] i was further elevated under basal conditions, but insulin release still suppressed in K ATP loss-of-function islets. Forced elevation of cAMP led to PKA-mediated increases in insulin secretion from islets lacking gap-junctions, but not from islets expressing Cx36 gap junctions. We conclude there is a redundancy in how cell-cell communication in the islet suppresses insulin release. Gap junctions suppress cellular heterogeneity and spontaneous [Ca 2+] i signals, while other juxtacrine mechanisms, regulated by PKA and glucose, suppress more distal steps in exocytosis. Each mechanism is sufficiently robust to compensate for a loss of the other and still suppress basal insulin secretion.
AB - Cell-cell communication in the islet of Langerhans is important for the regulation of insulin secretion. Gap-junctions coordinate oscillations in intracellular free-calcium ([Ca 2+] i) and insulin secretion in the islet following elevated glucose. Gap-junctions can also ensure that oscillatory [Ca 2+] i ceases when glucose is at a basal levels. We determine the roles of gap-junctions and other cell-cell communication pathways in the suppression of insulin secretion under basal conditions. Metabolic, electrical and insulin secretion levels were measured from islets lacking gap-junction coupling following deletion of connexion36 (Cx36 -/-), and these results were compared to those obtained using fully isolated β-cells. K ATP loss-of-function islets provide a further experimental model to specifically study gap-junction mediated suppression of electrical activity. In isolated β-cells or Cx36 -/- islets, elevations in [Ca 2+] i persisted in a subset of cells even at basal glucose. Isolated β-cells showed elevated insulin secretion at basal glucose; however, insulin secretion from Cx36 -/- islets was minimally altered. [Ca 2+] i was further elevated under basal conditions, but insulin release still suppressed in K ATP loss-of-function islets. Forced elevation of cAMP led to PKA-mediated increases in insulin secretion from islets lacking gap-junctions, but not from islets expressing Cx36 gap junctions. We conclude there is a redundancy in how cell-cell communication in the islet suppresses insulin release. Gap junctions suppress cellular heterogeneity and spontaneous [Ca 2+] i signals, while other juxtacrine mechanisms, regulated by PKA and glucose, suppress more distal steps in exocytosis. Each mechanism is sufficiently robust to compensate for a loss of the other and still suppress basal insulin secretion.
UR - http://www.scopus.com/inward/record.url?scp=81255177545&partnerID=8YFLogxK
U2 - 10.1113/jphysiol.2011.218909
DO - 10.1113/jphysiol.2011.218909
M3 - Article
C2 - 21930600
AN - SCOPUS:81255177545
SN - 0022-3751
VL - 589
SP - 5453
EP - 5466
JO - Journal of Physiology
JF - Journal of Physiology
IS - 22
ER -