Gadolinium-modulated 19F signals from perfluorocarbon nanoparticles as a new strategy for molecular imaging

Anne M. Neubauer, Jacob Myerson, Shelton D. Caruthers, Franklin D. Hockett, Patrick M. Winter, Junjie Chen, Patrick J. Gaffney, J. David Robertson, Gregory M. Lanza, Samuel A. Wickline

Research output: Contribution to journalArticlepeer-review

83 Scopus citations


Recent advances in the design of fluorinated nanoparticles for molecular magnetic resonance imaging (MRI) have enabled specific detection of 19F nuclei, providing unique and quantifiable spectral signatures. However, a pressing need for signal enhancement exists because the total 19F in imaging voxels is often limited. By directly incorporating a relaxation agent, gadolinium (Gd), into the lipid monolayer that surrounds the perfluorocarbon (PFC), a marked augmentation of the 19F signal from 200-nm nanoparticles was achieved. This design increases the magnetic relaxation rate of the 19F nuclei fourfold at 1.5 T and effects a 125% increase in signal - an effect that is maintained when they are targeted to human plasma clots. By varying the surface concentration of Gd, the relaxation effect can be quantitatively modulated to tailor particle properties. This novel strategy dramatically improves the sensitivity and range of 19F MRI/MRS and forms the basis for designing contrast agents capable of sensing their surface chemistry.

Original languageEnglish
Pages (from-to)1066-1072
Number of pages7
JournalMagnetic resonance in medicine
Issue number5
StatePublished - Nov 2008


  • F
  • Gadolinium
  • MRI
  • Nanoparticles
  • Perfluorocarbon


Dive into the research topics of 'Gadolinium-modulated 19F signals from perfluorocarbon nanoparticles as a new strategy for molecular imaging'. Together they form a unique fingerprint.

Cite this