TY - JOUR
T1 - G2A is a proton-sensing G-protein-coupled receptor antagonized by lysophosphatidylcholine
AU - Murakami, Naoka
AU - Yokomizo, Takehiko
AU - Okuno, Toshiaki
AU - Shimizu, Takao
PY - 2004/10/8
Y1 - 2004/10/8
N2 - G2A (from G2 accumulation) is a G-protein-coupled receptor (GPCR) that regulates the cell cycle, proliferation, oncogenesis, and immunity. G2A shares significant homology with three GPCRs including ovarian cancer GPCR (OGR1/GPR68), GPR4, and T cell death-associated gene 8 (TDAG8). Lysophosphatidylcholine (LPC) and sphingosylphosphorylcholine (SPC) were reported as ligands for G2A and GPR4 and for OGR1 (SPC only), and a glycosphingolipid psychosine was reported as ligand for TDAG8. As OGR1 and GPR4 were reported as proton-sensing GPCRs (Ludwig, M. G., Vanek, M., Guerini, D., Gasser, J. A., Jones, C. E., Junker, U., Hofstetter, H., Wolf, R. M., and Seuwen, K. (2003) Nature 425, 93-98), we evaluated the proton-sensing function of G2A. Transient expression of G2A caused significant activation of the zif 268 promoter and inositol phosphate (IP) accumulation at pH 7.6, and lowering extracellular pH augmented the activation only in G2A-espressing cells. LPC inhibited the pH-dependent activation of G2A in a dose-dependent manner in these assays. Thus, G2A is another proton-sensing GPCR, and LPC functions as an antagonist, not as an agonist, and regulates the proton-dependent activation of G2A.
AB - G2A (from G2 accumulation) is a G-protein-coupled receptor (GPCR) that regulates the cell cycle, proliferation, oncogenesis, and immunity. G2A shares significant homology with three GPCRs including ovarian cancer GPCR (OGR1/GPR68), GPR4, and T cell death-associated gene 8 (TDAG8). Lysophosphatidylcholine (LPC) and sphingosylphosphorylcholine (SPC) were reported as ligands for G2A and GPR4 and for OGR1 (SPC only), and a glycosphingolipid psychosine was reported as ligand for TDAG8. As OGR1 and GPR4 were reported as proton-sensing GPCRs (Ludwig, M. G., Vanek, M., Guerini, D., Gasser, J. A., Jones, C. E., Junker, U., Hofstetter, H., Wolf, R. M., and Seuwen, K. (2003) Nature 425, 93-98), we evaluated the proton-sensing function of G2A. Transient expression of G2A caused significant activation of the zif 268 promoter and inositol phosphate (IP) accumulation at pH 7.6, and lowering extracellular pH augmented the activation only in G2A-espressing cells. LPC inhibited the pH-dependent activation of G2A in a dose-dependent manner in these assays. Thus, G2A is another proton-sensing GPCR, and LPC functions as an antagonist, not as an agonist, and regulates the proton-dependent activation of G2A.
UR - http://www.scopus.com/inward/record.url?scp=5644250571&partnerID=8YFLogxK
U2 - 10.1074/jbc.M406561200
DO - 10.1074/jbc.M406561200
M3 - Article
C2 - 15280385
AN - SCOPUS:5644250571
SN - 0021-9258
VL - 279
SP - 42484
EP - 42491
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 41
ER -