TY - JOUR
T1 - Functionalizable Hydrophilic Polycarbonate, Poly(5-methyl-5-(2-hydroxypropyl)aminocarbonyl-1,3-dioxan-2-one), Designed as a Degradable Alternative for PHPMA and PEG
AU - Cho, Sangho
AU - Heo, Gyu Seong
AU - Khan, Sarosh
AU - Gonzalez, Amelia M.
AU - Elsabahy, Mahmoud
AU - Wooley, Karen L.
N1 - Publisher Copyright:
© 2015 American Chemical Society.
PY - 2015/12/22
Y1 - 2015/12/22
N2 - Drawbacks of poly(ethylene glycol) (PEG), the most widely used water-soluble polymer in nanomedicines, have stimulated development of alternative hydrophilic polymers. Among the substitutes, poly(N-(2-hydroxypropyl)methacrylamide) (PHPMA) exhibits water solubility, minimal toxicity, and the possibility to introduce functionalities through pendant hydroxyl groups; however, nondegradability may cause long-term health and environmental issues. Alternatively, polycarbonates based on bis-MPA derivatives, which are well-known to be biocompatible, biodegradable, and of low toxicity in vivo, could be utilized as degradable equivalents to polymethacrylates. Therefore, we developed a polycarbonate-based PHPMA analogue, poly(5-methyl-5-(2-hydroxypropyl)aminocarbonyl-1,3-dioxan-2-one) (PMHPAC), by amidation of carboxylic acid-functional polycarbonates with 1-amino-2-propanol. The resulting PMHPAC was highly water-soluble, with low cyto-/immuno-toxicities, and readily functionalizable. These characteristics make PMHPAC a promising candidate as a degradable alternative to PEG and PHPMA. Furthermore, a fully degradable PMHPAC block copolymer was synthesized to demonstrate synthetic versatility and formation of nanostructures in aqueous solution for potential biomedical applications.
AB - Drawbacks of poly(ethylene glycol) (PEG), the most widely used water-soluble polymer in nanomedicines, have stimulated development of alternative hydrophilic polymers. Among the substitutes, poly(N-(2-hydroxypropyl)methacrylamide) (PHPMA) exhibits water solubility, minimal toxicity, and the possibility to introduce functionalities through pendant hydroxyl groups; however, nondegradability may cause long-term health and environmental issues. Alternatively, polycarbonates based on bis-MPA derivatives, which are well-known to be biocompatible, biodegradable, and of low toxicity in vivo, could be utilized as degradable equivalents to polymethacrylates. Therefore, we developed a polycarbonate-based PHPMA analogue, poly(5-methyl-5-(2-hydroxypropyl)aminocarbonyl-1,3-dioxan-2-one) (PMHPAC), by amidation of carboxylic acid-functional polycarbonates with 1-amino-2-propanol. The resulting PMHPAC was highly water-soluble, with low cyto-/immuno-toxicities, and readily functionalizable. These characteristics make PMHPAC a promising candidate as a degradable alternative to PEG and PHPMA. Furthermore, a fully degradable PMHPAC block copolymer was synthesized to demonstrate synthetic versatility and formation of nanostructures in aqueous solution for potential biomedical applications.
UR - http://www.scopus.com/inward/record.url?scp=84951759577&partnerID=8YFLogxK
U2 - 10.1021/acs.macromol.5b01974
DO - 10.1021/acs.macromol.5b01974
M3 - Article
AN - SCOPUS:84951759577
SN - 0024-9297
VL - 48
SP - 8797
EP - 8805
JO - Macromolecules
JF - Macromolecules
IS - 24
ER -