TY - JOUR
T1 - Functional regulation of T-type calcium channels by S-nitrosothiols in the rat thalamus
AU - Joksovic, Pavle M.
AU - Doctor, Allan
AU - Gaston, Benjamin
AU - Todorovic, Slobodan M.
PY - 2007/4
Y1 - 2007/4
N2 - Although T-type Ca2+ channels in the reticular thalamic nucleus (nRT) have a central function in tuning neuronal excitability and are implicated in sensory processing, sleep, and epilepsy, the mechanisms involved in their regulation are poorly understood. Here we recorded T-type Ca2+ currents from intact nRT neurons in brain slices from young rats and investigated the mechanisms of T-type channel modulation by S-nitrosothiols (SNOs). We found that extracellular application of S-nitrosoglutathione (GSNO), S-nitrosocysteine (CSNO) and S-nitroso-N-acetyl-penicillamin (SNAP) rapidly and reversibly reduced T-type currents. The effects of SNOs are strongly stereoselective at physiological concentrations: L-CSNO was fourfold more effective in inhibiting T-type current than was D-CSNO. The effects of GSNO were abolished if cells had been treated with free hemoglobin or N-ethylmaleimide, an irreversible alkylating agent but not by 8-bromoguanosine-3′,5′-cyclomonophosphate sodium salt, a membrane-permeant cGMP analogue or 1H-(1,2,4) oxadiazolo (4,3-a) quinoxalin-1-one, a specific soluble guanylyl cyclase inhibitor. In addition, bath applications of GSNO inhibited T-type currents in nucleated outside-out patches and whole cell recordings to a similar extent, with minimal effect on cell-attached recordings, suggesting a direct effect of GSNO on putative extracellular thiol residues on T-type channels. Biophysical studies indicate that GSNO decreased the availability of T-type channels at physiological potentials by modifying gating and stabilizing inactive states of the channels. In current-clamp experiments, GSNO diminished the amplitude of low-threshold calcium spikes and frequency of spike firing with minimal effects on the passive membrane properties. Collectively, the results indicate that SNOs may be a class of endogenous agents that control the functional states of the thalamus.
AB - Although T-type Ca2+ channels in the reticular thalamic nucleus (nRT) have a central function in tuning neuronal excitability and are implicated in sensory processing, sleep, and epilepsy, the mechanisms involved in their regulation are poorly understood. Here we recorded T-type Ca2+ currents from intact nRT neurons in brain slices from young rats and investigated the mechanisms of T-type channel modulation by S-nitrosothiols (SNOs). We found that extracellular application of S-nitrosoglutathione (GSNO), S-nitrosocysteine (CSNO) and S-nitroso-N-acetyl-penicillamin (SNAP) rapidly and reversibly reduced T-type currents. The effects of SNOs are strongly stereoselective at physiological concentrations: L-CSNO was fourfold more effective in inhibiting T-type current than was D-CSNO. The effects of GSNO were abolished if cells had been treated with free hemoglobin or N-ethylmaleimide, an irreversible alkylating agent but not by 8-bromoguanosine-3′,5′-cyclomonophosphate sodium salt, a membrane-permeant cGMP analogue or 1H-(1,2,4) oxadiazolo (4,3-a) quinoxalin-1-one, a specific soluble guanylyl cyclase inhibitor. In addition, bath applications of GSNO inhibited T-type currents in nucleated outside-out patches and whole cell recordings to a similar extent, with minimal effect on cell-attached recordings, suggesting a direct effect of GSNO on putative extracellular thiol residues on T-type channels. Biophysical studies indicate that GSNO decreased the availability of T-type channels at physiological potentials by modifying gating and stabilizing inactive states of the channels. In current-clamp experiments, GSNO diminished the amplitude of low-threshold calcium spikes and frequency of spike firing with minimal effects on the passive membrane properties. Collectively, the results indicate that SNOs may be a class of endogenous agents that control the functional states of the thalamus.
UR - http://www.scopus.com/inward/record.url?scp=34147184762&partnerID=8YFLogxK
U2 - 10.1152/jn.00926.2006
DO - 10.1152/jn.00926.2006
M3 - Article
C2 - 17287440
AN - SCOPUS:34147184762
SN - 0022-3077
VL - 97
SP - 2712
EP - 2721
JO - Journal of neurophysiology
JF - Journal of neurophysiology
IS - 4
ER -