TY - JOUR
T1 - Functional mining of novel terpene synthases from metagenomes
AU - Kwak, Suryang
AU - Crook, Nathan
AU - Yoneda, Aki
AU - Ahn, Naomi
AU - Ning, Jie
AU - Cheng, Jiye
AU - Dantas, Gautam
N1 - Funding Information:
We thank members of the Dantas lab for their help with protocol optimization and for thoughtful discussions on the results and analyses presented herein. We appreciate the gifts pA5c–RFP (FZ105), pBbB5k–MBIS (FZ239), pW1a–AgBis (FZ260), and MsLim template from the laboratory of Dr. Fuzhong Zhang at the Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis. We thank the Edison Family Center for Genome Sciences & Systems Biology at Washington University School of Medicine in St. Louis staff (Eric Martin, Brian Koebbe, Jessica Hoisington-López, and MariaLynn Crosby) for technical support in high-throughput sequencing and computing.
Funding Information:
Research reported in this publication was supported in part by awards to G.D. through the International Center for Advanced Renewable Energy and Sustainability at Washington University, and the NIH Director’s New Innovator Award (DP2-DK-098089). N.C. received support from the NIDDK Pediatric Gastroenterology Research Training Program of the NIH under award number T32-DK-077653 (Phillip I. Tarr, Principal Investigator). The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding agencies.
Publisher Copyright:
© 2022, The Author(s).
PY - 2022/12
Y1 - 2022/12
N2 - Background: Terpenes are one of the most diverse and abundant classes of natural biomolecules, collectively enabling a variety of therapeutic, energy, and cosmetic applications. Recent genomics investigations have predicted a large untapped reservoir of bacterial terpene synthases residing in the genomes of uncultivated organisms living in the soil, indicating a vast array of putative terpenoids waiting to be discovered. Results: We aimed to develop a high-throughput functional metagenomic screening system for identifying novel terpene synthases from bacterial metagenomes by relieving the toxicity of terpene biosynthesis precursors to the Escherichia coli host. The precursor toxicity was achieved using an inducible operon encoding the prenyl pyrophosphate synthetic pathway and supplementation of the mevalonate precursor. Host strain and screening procedures were finely optimized to minimize false positives arising from spontaneous mutations, which avoid the precursor toxicity. Our functional metagenomic screening of human fecal metagenomes yielded a novel β-farnesene synthase, which does not show amino acid sequence similarity to known β-farnesene synthases. Engineered S. cerevisiae expressing the screened β-farnesene synthase produced 120 mg/L β-farnesene from glucose (2.86 mg/g glucose) with a productivity of 0.721 g/L∙h. Conclusions: A unique functional metagenomic screening procedure was established for screening terpene synthases from metagenomic libraries. This research proves the potential of functional metagenomics as a sequence-independent avenue for isolating targeted enzymes from uncultivated organisms in various environmental habitats.
AB - Background: Terpenes are one of the most diverse and abundant classes of natural biomolecules, collectively enabling a variety of therapeutic, energy, and cosmetic applications. Recent genomics investigations have predicted a large untapped reservoir of bacterial terpene synthases residing in the genomes of uncultivated organisms living in the soil, indicating a vast array of putative terpenoids waiting to be discovered. Results: We aimed to develop a high-throughput functional metagenomic screening system for identifying novel terpene synthases from bacterial metagenomes by relieving the toxicity of terpene biosynthesis precursors to the Escherichia coli host. The precursor toxicity was achieved using an inducible operon encoding the prenyl pyrophosphate synthetic pathway and supplementation of the mevalonate precursor. Host strain and screening procedures were finely optimized to minimize false positives arising from spontaneous mutations, which avoid the precursor toxicity. Our functional metagenomic screening of human fecal metagenomes yielded a novel β-farnesene synthase, which does not show amino acid sequence similarity to known β-farnesene synthases. Engineered S. cerevisiae expressing the screened β-farnesene synthase produced 120 mg/L β-farnesene from glucose (2.86 mg/g glucose) with a productivity of 0.721 g/L∙h. Conclusions: A unique functional metagenomic screening procedure was established for screening terpene synthases from metagenomic libraries. This research proves the potential of functional metagenomics as a sequence-independent avenue for isolating targeted enzymes from uncultivated organisms in various environmental habitats.
KW - Functional metagenomics
KW - Prenyl pyrophosphate
KW - Terpene synthase
KW - β-Farnesene
UR - http://www.scopus.com/inward/record.url?scp=85139967691&partnerID=8YFLogxK
U2 - 10.1186/s13068-022-02189-9
DO - 10.1186/s13068-022-02189-9
M3 - Article
C2 - 36209178
AN - SCOPUS:85139967691
SN - 2731-3654
VL - 15
JO - Biotechnology for Biofuels and Bioproducts
JF - Biotechnology for Biofuels and Bioproducts
IS - 1
M1 - 104
ER -