TY - JOUR
T1 - Functional analysis of the final steps of the 1-deoxy-D-xylulose 5-phosphate (DXP) pathway to isoprenoids in plants using virus-induced gene silencing
AU - Page, Jonathan E.
AU - Hause, Gerd
AU - Raschke, Maja
AU - Gao, Wenyun
AU - Schmidt, Jürgen
AU - Zenk, Meinhart H.
AU - Kutchan, Toni M.
PY - 2004/4
Y1 - 2004/4
N2 - Isoprenoid biosynthesis in plant plastids occurs via the 1-deoxy-D-xylulose 5-phosphate (DXP) pathway. We used tobacco rattle virus (TRV) to posttranscriptionally silence the expression of the last two enzymes of this pathway, the IspG-encoded (E)-4-hydroxy-3-methylbut-2-enyl diphosphate synthase (HDS) and the IspH-encoded isopentenyl/dimethylallyl diphosphate synthase (IDDS), as well as isopentenyl/dimethylallyl diphosphate isomerase (IDI), the enzyme that interconverts IPP and DMAPP TRV-IspG and TRV-IspH infected Nicotiana benthamiana plants had albino leaves that contained less than 4% of the chlorophyll and carotenoid pigments of control leaves. We applied [ 14C]DXP and [14C]DXP to silenced leaves and found that 2-C-methyl-D-erythritol 2,4-cyclodiphosphate accumulated in plants blocked at HDS while DXP, (E)-4-hydroxy-3-methylbut-2-enyl phosphate and (E)-2-methylbut-2-ene-1,4-diol accumulated in IDDS-blocked plants. Albino leaves from IspG- and IspH-silenced plants displayed a disorganized palisade mesophyll, reduced cuticle, fewer plastids, and disrupted thylakoid membranes. These findings demonstrate the participation of HDS and IDDS in the DXP pathway in plants, and support the view that plastid isoprenoid biosynthesis is metabolically and physically segregated from the mevalonate pathway. IDI-silenced plants had mottled white-pale green leaves with disrupted tissue and plastid structure, and showed an 80% reduction in pigments compared to controls. IPP pyrophosphatase activity was higher in chloroplasts isolated from IDI-silenced plants than in control plant chloroplasts. We suggest that a low level of isoprenoid biosynthesis via the DXP pathway can occur without IDI but that this enzyme is required for full function of the DXP pathway.
AB - Isoprenoid biosynthesis in plant plastids occurs via the 1-deoxy-D-xylulose 5-phosphate (DXP) pathway. We used tobacco rattle virus (TRV) to posttranscriptionally silence the expression of the last two enzymes of this pathway, the IspG-encoded (E)-4-hydroxy-3-methylbut-2-enyl diphosphate synthase (HDS) and the IspH-encoded isopentenyl/dimethylallyl diphosphate synthase (IDDS), as well as isopentenyl/dimethylallyl diphosphate isomerase (IDI), the enzyme that interconverts IPP and DMAPP TRV-IspG and TRV-IspH infected Nicotiana benthamiana plants had albino leaves that contained less than 4% of the chlorophyll and carotenoid pigments of control leaves. We applied [ 14C]DXP and [14C]DXP to silenced leaves and found that 2-C-methyl-D-erythritol 2,4-cyclodiphosphate accumulated in plants blocked at HDS while DXP, (E)-4-hydroxy-3-methylbut-2-enyl phosphate and (E)-2-methylbut-2-ene-1,4-diol accumulated in IDDS-blocked plants. Albino leaves from IspG- and IspH-silenced plants displayed a disorganized palisade mesophyll, reduced cuticle, fewer plastids, and disrupted thylakoid membranes. These findings demonstrate the participation of HDS and IDDS in the DXP pathway in plants, and support the view that plastid isoprenoid biosynthesis is metabolically and physically segregated from the mevalonate pathway. IDI-silenced plants had mottled white-pale green leaves with disrupted tissue and plastid structure, and showed an 80% reduction in pigments compared to controls. IPP pyrophosphatase activity was higher in chloroplasts isolated from IDI-silenced plants than in control plant chloroplasts. We suggest that a low level of isoprenoid biosynthesis via the DXP pathway can occur without IDI but that this enzyme is required for full function of the DXP pathway.
UR - http://www.scopus.com/inward/record.url?scp=1942533683&partnerID=8YFLogxK
U2 - 10.1104/pp.103.038133
DO - 10.1104/pp.103.038133
M3 - Article
C2 - 15064370
AN - SCOPUS:1942533683
SN - 0032-0889
VL - 134
SP - 1401
EP - 1413
JO - Plant Physiology
JF - Plant Physiology
IS - 4
ER -