TY - GEN
T1 - FroSSL
T2 - 18th European Conference on Computer Vision, ECCV 2024
AU - Skean, Oscar
AU - Dhakal, Aayush
AU - Jacobs, Nathan
AU - Sanchez Giraldo, Luis Gonzalo
N1 - Publisher Copyright:
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.
PY - 2025
Y1 - 2025
N2 - Self-supervised learning (SSL) is a popular paradigm for representation learning. Recent multiview methods can be classified as sample-contrastive, dimension-contrastive, or asymmetric network-based, with each family having its own approach to avoiding informational collapse. While these families converge to solutions of similar quality, it can be empirically shown that some methods are epoch-inefficient and require longer training to reach a target performance. Two main approaches to improving efficiency are covariance eigenvalue regularization and using more views. However, these two approaches are difficult to combine due to the computational complexity of computing eigenvalues. We present the objective function FroSSL which reconciles both approaches while avoiding eigendecomposition entirely. FroSSL works by minimizing covariance Frobenius norms to avoid collapse and minimizing mean-squared error to achieve augmentation invariance. We show that FroSSL reaches competitive accuracies more quickly than any other SSL method and provide theoretical and empirical support that this faster convergence is due to how FroSSL affects the eigenvalues of the embedding covariance matrices. We also show that FroSSL learns competitive representations on linear probe evaluation when used to train a ResNet18 on several datasets, including STL-10, Tiny Imagenet, and Imagenet-100. Github.
AB - Self-supervised learning (SSL) is a popular paradigm for representation learning. Recent multiview methods can be classified as sample-contrastive, dimension-contrastive, or asymmetric network-based, with each family having its own approach to avoiding informational collapse. While these families converge to solutions of similar quality, it can be empirically shown that some methods are epoch-inefficient and require longer training to reach a target performance. Two main approaches to improving efficiency are covariance eigenvalue regularization and using more views. However, these two approaches are difficult to combine due to the computational complexity of computing eigenvalues. We present the objective function FroSSL which reconciles both approaches while avoiding eigendecomposition entirely. FroSSL works by minimizing covariance Frobenius norms to avoid collapse and minimizing mean-squared error to achieve augmentation invariance. We show that FroSSL reaches competitive accuracies more quickly than any other SSL method and provide theoretical and empirical support that this faster convergence is due to how FroSSL affects the eigenvalues of the embedding covariance matrices. We also show that FroSSL learns competitive representations on linear probe evaluation when used to train a ResNet18 on several datasets, including STL-10, Tiny Imagenet, and Imagenet-100. Github.
UR - http://www.scopus.com/inward/record.url?scp=85210820825&partnerID=8YFLogxK
U2 - 10.1007/978-3-031-73024-5_5
DO - 10.1007/978-3-031-73024-5_5
M3 - Conference contribution
AN - SCOPUS:85210820825
SN - 9783031730238
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 69
EP - 85
BT - Computer Vision – ECCV 2024 - 18th European Conference, Proceedings
A2 - Leonardis, Aleš
A2 - Ricci, Elisa
A2 - Roth, Stefan
A2 - Russakovsky, Olga
A2 - Sattler, Torsten
A2 - Varol, Gül
PB - Springer Science and Business Media Deutschland GmbH
Y2 - 29 September 2024 through 4 October 2024
ER -