Fractionated radiation therapy in combination with adenoviral delivery of the cytosine deaminase gene and 5-fluorocytosine enhances cytotoxic and antitumor effects in human colorectal and cholangiocarcinoma models

M. A. Stackhouse, L. C. Pederson, W. E. Grizzle, D. T. Curiel, J. Gebert, K. Haack, S. M. Vickers, M. S. Mayo, D. J. Buchsbaum

Research output: Contribution to journalArticlepeer-review

48 Scopus citations

Abstract

Radiosensitization of human gastrointestinal tumors by 5-fluorouracil (5-FU) has been studied in vitro and clinically in human cancer therapy trials. The bacterial enzyme cytosine deaminase (CD) converts the nontoxic prodrug 5-fluorocytosine (5-FC) into 5-FU. Human colon cancer cells stably expressing CD have been shown by other investigators to be sensitized to radiation following treatment with 5-FC. We previously used an adenoviral vector under control of the cytomegalovirus promoter (AdCMVCD) encoding the CD gene in combination with 5-FC and a single fraction of radiation exposure to enhance cytotoxicity to human cholangiocarcinoma cells in vitro and in vivo. The purpose of this study was to determine whether AdCMVCD infection and 5-FC with multiple fraction low-dose radiotherapy results in enhanced cytotoxicity. In the present study, we utilized AdCMVCD and 5-FC with single fraction radiotherapy to demonstrate enhanced cytotoxicity to WiDr human colon carcinoma cells in vitro. Additionally, we tested this gene therapy/prodrug treatment strategy employing a fractionated radiation dosing schema in animal models of WiDr colon carcinoma and SK-ChA-1 cholangiocarcinoma. A prolonged WiDr tumor regrowth delay was obtained with AdCMVCD infection in combination with systemic delivery of 5-FC and fractionated external beam radiation therapy compared with control animals treated without radiation, without 5-FC, or without AdCMVCD. The results of treatment with AdCMVCD + 5-FC + radiation therapy to cholangiocarcinoma xenografts were equivalent to those obtained with systemic 5-FU administration + radiation. Thus, the use of AdCMVCD can be effectively combined with clinically relevant 5-FC and radiation administration schemes to achieve enhanced tumor cell killing and increased control of established tumors of human gastrointestinal malignancies.

Original languageEnglish
Pages (from-to)1019-1026
Number of pages8
JournalGene therapy
Volume7
Issue number12
DOIs
StatePublished - Jun 2000

Keywords

  • Cholangiocarcinoma
  • Colon cancer
  • Cytosine deaminase
  • Gene therapy
  • Molecular chemotherapy
  • Radiation therapy

Fingerprint

Dive into the research topics of 'Fractionated radiation therapy in combination with adenoviral delivery of the cytosine deaminase gene and 5-fluorocytosine enhances cytotoxic and antitumor effects in human colorectal and cholangiocarcinoma models'. Together they form a unique fingerprint.

Cite this