TY - JOUR
T1 - Formation of heteromeric Kv2 channels in mammalian brain neurons
AU - Kihira, Yoshitaka
AU - Hermanstyne, Tracey O.
AU - Misonou, Hiroaki
PY - 2010/5/14
Y1 - 2010/5/14
N2 - The formation of heteromeric tetramers is a common feature of voltage-gated potassium (Kv) channels. This results in the generation of a variety of tetrameric Kv channels that exhibit distinct biophysical and biochemical characteristics. Kv2 delayed rectifier channels are, however, unique exceptions. It has been previously shown that mammalian Kv2.1 and Kv2.2 are localized in distinct domains of neuronal membranes and are not capable of forming heteromeric channels with each other (Hwang, P. M., Glatt, C. E., Bredt, D. S., Yellen, G., and Snyder, S. H. (1992) Neuron 8, 473-481). In this study, we report a novel form of rat Kv2.2, Kv2.2long, which has not been previously recognized. Our data indicate that Kv2.2long is the predominant form of Kv2.2 expressed in cortical pyramidal neurons. In contrast to the previous findings, we also found that rat Kv2.1 and Kv2.2long are colocalized in the somata and proximal dendrites of cortical pyramidal neurons and are capable of forming functional heteromeric delayed rectifier channels. Our results suggest that the delayed rectifier currents, which regulate action potential firing, are encoded by heteromeric Kv2 channels in cortical neurons.
AB - The formation of heteromeric tetramers is a common feature of voltage-gated potassium (Kv) channels. This results in the generation of a variety of tetrameric Kv channels that exhibit distinct biophysical and biochemical characteristics. Kv2 delayed rectifier channels are, however, unique exceptions. It has been previously shown that mammalian Kv2.1 and Kv2.2 are localized in distinct domains of neuronal membranes and are not capable of forming heteromeric channels with each other (Hwang, P. M., Glatt, C. E., Bredt, D. S., Yellen, G., and Snyder, S. H. (1992) Neuron 8, 473-481). In this study, we report a novel form of rat Kv2.2, Kv2.2long, which has not been previously recognized. Our data indicate that Kv2.2long is the predominant form of Kv2.2 expressed in cortical pyramidal neurons. In contrast to the previous findings, we also found that rat Kv2.1 and Kv2.2long are colocalized in the somata and proximal dendrites of cortical pyramidal neurons and are capable of forming functional heteromeric delayed rectifier channels. Our results suggest that the delayed rectifier currents, which regulate action potential firing, are encoded by heteromeric Kv2 channels in cortical neurons.
UR - http://www.scopus.com/inward/record.url?scp=77952050675&partnerID=8YFLogxK
U2 - 10.1074/jbc.M109.074260
DO - 10.1074/jbc.M109.074260
M3 - Article
C2 - 20202934
AN - SCOPUS:77952050675
VL - 285
SP - 15048
EP - 15055
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
SN - 0021-9258
IS - 20
ER -