TY - JOUR
T1 - Folate Receptor α-Targeted89Zr-M9346A Immuno-PET for Image-Guided Intervention with Mirvetuximab Soravtansine in Triple-Negative Breast Cancer
AU - Heo, Gyu Seong
AU - Detering, Lisa
AU - Luehmann, Hannah P.
AU - Primeau, Tina
AU - Lee, Yi Shan
AU - Laforest, Richard
AU - Li, Shunqiang
AU - Stec, James
AU - Lim, Kian Huat
AU - Lockhart, A. Craig
AU - Liu, Yongjian
N1 - Publisher Copyright:
© 2019 American Chemical Society.
PY - 2019/9/3
Y1 - 2019/9/3
N2 - Folate receptor α (FRα) is a well-studied tumor biomarker highly expressed in many epithelial tumors such as breast, ovarian, and lung cancers. Mirvetuximab soravtansine (IMGN853) is the antibody-drug conjugate of FRα-binding humanized monoclonal antibody M9346A and cytotoxic maytansinoid drug DM4. IMGN853 is currently being evaluated in multiple clinical trials, in which the immunohistochemical evaluation of an archival tumor or biopsy specimen is used for patient screening. However, limited tissue collection may lead to inaccurate diagnosis due to tumor heterogeneity. Herein, we developed a zirconium-89 (89Zr)-radiolabeled M9346A (89Zr-M9346A) as an immuno-positron emission tomography (immuno-PET) radiotracer to evaluate FRα expression in triple-negative breast cancer (TNBC) patients, providing a novel means to guide intervention with therapeutic IMGN853. In this study, we verified the binding specificity and immunoreactivity of 89Zr-M9346A by in vitro studies in FRαhigh cells (HeLa) and FRαlow cells (OVCAR-3). In vivo PET/computed tomography (PET/CT) imaging in HeLa xenografts and TNBC patient-derived xenograft (PDX) mouse models with various levels of FRα expression demonstrated its targeting specificity and sensitivity. Following PET imaging, the treatment efficiencies of IMGN853, pemetrexed, IMGN853 + pemetrexed, paclitaxel, and saline were assessed in FRαhigh and FRαlow TNBC PDX models. The correlation between 89Zr-M9346A tumor uptake and treatment response using IMGN853 in FRαhigh TNBC PDX model suggested the potential of 89Zr-M9346A PET as a noninvasive tool to prescreen patients based on the in vivo PET imaging for IMGN853-targeted treatment.
AB - Folate receptor α (FRα) is a well-studied tumor biomarker highly expressed in many epithelial tumors such as breast, ovarian, and lung cancers. Mirvetuximab soravtansine (IMGN853) is the antibody-drug conjugate of FRα-binding humanized monoclonal antibody M9346A and cytotoxic maytansinoid drug DM4. IMGN853 is currently being evaluated in multiple clinical trials, in which the immunohistochemical evaluation of an archival tumor or biopsy specimen is used for patient screening. However, limited tissue collection may lead to inaccurate diagnosis due to tumor heterogeneity. Herein, we developed a zirconium-89 (89Zr)-radiolabeled M9346A (89Zr-M9346A) as an immuno-positron emission tomography (immuno-PET) radiotracer to evaluate FRα expression in triple-negative breast cancer (TNBC) patients, providing a novel means to guide intervention with therapeutic IMGN853. In this study, we verified the binding specificity and immunoreactivity of 89Zr-M9346A by in vitro studies in FRαhigh cells (HeLa) and FRαlow cells (OVCAR-3). In vivo PET/computed tomography (PET/CT) imaging in HeLa xenografts and TNBC patient-derived xenograft (PDX) mouse models with various levels of FRα expression demonstrated its targeting specificity and sensitivity. Following PET imaging, the treatment efficiencies of IMGN853, pemetrexed, IMGN853 + pemetrexed, paclitaxel, and saline were assessed in FRαhigh and FRαlow TNBC PDX models. The correlation between 89Zr-M9346A tumor uptake and treatment response using IMGN853 in FRαhigh TNBC PDX model suggested the potential of 89Zr-M9346A PET as a noninvasive tool to prescreen patients based on the in vivo PET imaging for IMGN853-targeted treatment.
KW - antibody-drug conjugate
KW - companion diagnostic
KW - folate receptor α
KW - image-guided therapy
KW - immuno-PET
UR - http://www.scopus.com/inward/record.url?scp=85071687721&partnerID=8YFLogxK
U2 - 10.1021/acs.molpharmaceut.9b00653
DO - 10.1021/acs.molpharmaceut.9b00653
M3 - Article
C2 - 31369274
AN - SCOPUS:85071687721
SN - 1543-8384
VL - 16
SP - 3996
EP - 4006
JO - Molecular Pharmaceutics
JF - Molecular Pharmaceutics
IS - 9
ER -