Abstract
Focused ultrasound (FUS) technology is reported to enhance the delivery of 64Cu-integrated ultrasmall gold nanoclusters (64Cu-AuNCs) across the blood-brain barrier (BBB) as measured by positron emission tomography (PET). To better define the optimal physical properties for brain delivery, 64Cu-AuNCs with different surface charges are synthesized and characterized. In vivo biodistribution studies are performed to compare the individual organ uptake of each type of 64Cu-AuNCs. Quantitative PET imaging post-FUS treatment shows site-targeted brain penetration, retention, and diffusion of the negative, neutral, and positive 64Cu-AuNCs. Autoradiography is performed to compare the intrabrain distribution of these nanoclusters. PET Imaging demonstrates the effective BBB opening and successful delivery of 64Cu-AuNCs into the brain. Of the three 64Cu-AuNCs investigated, the neutrally charged nanostructure performs the best and is the candidate platform for future theranostic applications in neuro-oncology.
Original language | English |
---|---|
Article number | 1703115 |
Journal | Small |
Volume | 14 |
Issue number | 30 |
DOIs | |
State | Published - Jul 26 2018 |
Keywords
- brain
- focused ultrasound
- imaging
- nanoclusters
- positron emission tomography