Abstract
Gram-negative pathogens commonly exhibit adhesive pili on their surfaces that mediate specific attachment to the host. A major class of pili is assembled via the chaperone/usher pathway. Here, the structural basis for pilus fiber assembly and secretion performed by the outer membrane assembly platform-the usher-is revealed by the crystal structure of the translocation domain of the P pilus usher PapC and single particle cryo-electron microscopy imaging of the FimD usher bound to a translocating type 1 pilus assembly intermediate. These structures provide molecular snapshots of a twinned-pore translocation machinery in action. Unexpectedly, only one pore is used for secretion, while both usher protomers are used for chaperone-subunit complex recruitment. The translocating pore itself comprises 24 β strands and is occluded by a folded plug domain, likely gated by a conformationally constrained β-hairpin. These structures capture the secretion of a virulence factor across the outer membrane of Gram-negative bacteria.
Original language | English |
---|---|
Pages (from-to) | 640-652 |
Number of pages | 13 |
Journal | Cell |
Volume | 133 |
Issue number | 4 |
DOIs | |
State | Published - May 16 2008 |
Keywords
- CELLBIO
- MICROBIO