TY - JOUR
T1 - Feasibility of 3D tracking and adaptation of VMAT based on VMAT-CT
AU - Zhao, Xiaodong
AU - Zhang, Rui
N1 - Publisher Copyright:
© 2020 Elsevier B.V.
PY - 2020/8
Y1 - 2020/8
N2 - Background: Local computed tomography (CT) reconstruction is achievable with portal images acquired during volumetric-modulated arc therapy (VMAT) delivery and was named as VMAT-CT. However, the application of VMAT-CT is limited because it has limited field of view and no density information. In addition, the new generation of multi-leaf collimator with faster speed and various collimator angles used in patients’ plans could cause more artifacts in VMAT-CT. The goal of this study was to extend VMAT-CT concept, generate complete three-dimensional (3D) CT images, calculate new 3D dose, track and adapt VMAT plan based on updated images and dose. Materials and methods: VMAT-CT and planning CT of phantoms were fused by rigid or deformable registration to create VMAT-CT+ images. Trackings based on planning CT, VMAT-CT+, and cone beam CT (CBCT) were compared. When prescription dose was not met for planning target volume (PTV), re-planning was demonstrated on an in-house deformable phantom. Possible uncertainties were also evaluated. Results: Tracking based on VMAT-CT+ was accurate and superior to those based on planning CT and CBCT since VMAT-CT+ can detect changes during treatment. PTV coverage in the deformable phantom decreased after deformations but went up and met the prescription goal after re-planning. The impact of uncertainties on dose was minimal. Conclusion: 3D tracking and adaptation of VMAT based on VMAT-CT are feasible. Our study has the potential to increase the confidence of beam delivery, catch and remedy errors during VMAT.
AB - Background: Local computed tomography (CT) reconstruction is achievable with portal images acquired during volumetric-modulated arc therapy (VMAT) delivery and was named as VMAT-CT. However, the application of VMAT-CT is limited because it has limited field of view and no density information. In addition, the new generation of multi-leaf collimator with faster speed and various collimator angles used in patients’ plans could cause more artifacts in VMAT-CT. The goal of this study was to extend VMAT-CT concept, generate complete three-dimensional (3D) CT images, calculate new 3D dose, track and adapt VMAT plan based on updated images and dose. Materials and methods: VMAT-CT and planning CT of phantoms were fused by rigid or deformable registration to create VMAT-CT+ images. Trackings based on planning CT, VMAT-CT+, and cone beam CT (CBCT) were compared. When prescription dose was not met for planning target volume (PTV), re-planning was demonstrated on an in-house deformable phantom. Possible uncertainties were also evaluated. Results: Tracking based on VMAT-CT+ was accurate and superior to those based on planning CT and CBCT since VMAT-CT+ can detect changes during treatment. PTV coverage in the deformable phantom decreased after deformations but went up and met the prescription goal after re-planning. The impact of uncertainties on dose was minimal. Conclusion: 3D tracking and adaptation of VMAT based on VMAT-CT are feasible. Our study has the potential to increase the confidence of beam delivery, catch and remedy errors during VMAT.
KW - Adaptive radiotherapy
KW - Computed tomography
KW - Three-dimensional
KW - Tracking
KW - Volumetric modulated arc therapy
UR - http://www.scopus.com/inward/record.url?scp=85084479494&partnerID=8YFLogxK
U2 - 10.1016/j.radonc.2020.04.032
DO - 10.1016/j.radonc.2020.04.032
M3 - Article
C2 - 32416375
AN - SCOPUS:85084479494
SN - 0167-8140
VL - 149
SP - 18
EP - 24
JO - Radiotherapy and Oncology
JF - Radiotherapy and Oncology
ER -