Abstract
Homeostatic regulation of neuronal activity is essential for robust computation; set-points, such as firing rate, are actively stabilized to compensate for perturbations. The disruption of brain function central to neurodegenerative disease likely arises from impairments of computationally essential set-points. Here, we systematically investigated the effects of tau-mediated neurodegeneration on all known set-points in neuronal activity. We continuously tracked hippocampal neuronal activity across the lifetime of a mouse model of tauopathy. We were unable to detect effects of disease in measures of single-neuron firing activity. By contrast, as tauopathy progressed, there was disruption of network-level neuronal activity, quantified by measuring neuronal pairwise interactions and criticality, a homeostatically controlled, ideal computational regime. Deviations in criticality correlated with symptoms, predicted underlying anatomical pathology, occurred in a sleep-wake-dependent manner, and could be used to reliably classify an animal's genotype. This work illustrates how neurodegeneration may disrupt the computational capacity of neurobiological systems.
Original language | English |
---|---|
Pages (from-to) | 3567-3584.e5 |
Journal | Neuron |
Volume | 112 |
Issue number | 21 |
DOIs | |
State | Published - Nov 6 2024 |
Keywords
- behavior
- criticality
- hippocampus
- homeostasis
- neurodegeneration
- neurophysiology
- sleep
- tau