TY - JOUR
T1 - F-box protein 10, an NF-B-κdependent anti-apoptotic protein, regulates TRAIL-induced apoptosis through modulating c-Fos/c-FLIP pathway
AU - Ge, R.
AU - Wang, Z.
AU - Zeng, Q.
AU - Xu, X.
AU - Olumi, A. F.
N1 - Funding Information:
Acknowledgements. This work was partially funded by support from the Edwin Beer Fellowship–New York Academy of Medicine to AFO.
PY - 2011/7
Y1 - 2011/7
N2 - Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces selective apoptotic death of human cancer cells while sparing normal human cells. Although TRAIL holds great promise as a potential anticancer agent, some tumors develop resistance to TRAIL. Previously, we have shown that the activator protein 1 (AP-1) family member, c-Fos, is an important modulator of apoptosis. Although F- box protein 10 (FBXL10) has been implicated to regulate an AP-1 family protein, c-Jun, its role in mediating apoptotic pathways has not been previously investigated. Here, we report that FBXL10 is a transcriptional repressor of c-Fos and a target gene of nuclear factor kappa-light-chain- enhancer of activated B cells (NF-κB)-p65 in human cancers. We demonstrate that FBXL10 is an important anti-apoptotic molecule, which directly binds and represses c-Fos promoter in order for cancer cells to resist TRAIL-induced apoptosis. FBXL10 indirectly regulates c-FLIP(L) levels via c-Fos-dependent pathways. Silencing of FBXL10 sensitizes resistant cells to TRAIL, while, overexpression of FBXL10 represses TRAIL-induced apoptosis. Moreover, our results indicate that expression of FBXL10 functions via an NF-κB- dependent pathway, and TRAIL or proteasome inhibitors downregulate FBXL10 via inhibiting NF-κB signaling. Taken together, we find a novel functional role for FBXL10 as an anti-apoptotic molecule, and describe a new apoptotic-related pathway that involves NF-κB/FBXL10/c-Fos/c-FLIP. Therefore, silencing FBXL10 can help overcome resistant cancer cells for pro-apoptotic therapies.
AB - Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces selective apoptotic death of human cancer cells while sparing normal human cells. Although TRAIL holds great promise as a potential anticancer agent, some tumors develop resistance to TRAIL. Previously, we have shown that the activator protein 1 (AP-1) family member, c-Fos, is an important modulator of apoptosis. Although F- box protein 10 (FBXL10) has been implicated to regulate an AP-1 family protein, c-Jun, its role in mediating apoptotic pathways has not been previously investigated. Here, we report that FBXL10 is a transcriptional repressor of c-Fos and a target gene of nuclear factor kappa-light-chain- enhancer of activated B cells (NF-κB)-p65 in human cancers. We demonstrate that FBXL10 is an important anti-apoptotic molecule, which directly binds and represses c-Fos promoter in order for cancer cells to resist TRAIL-induced apoptosis. FBXL10 indirectly regulates c-FLIP(L) levels via c-Fos-dependent pathways. Silencing of FBXL10 sensitizes resistant cells to TRAIL, while, overexpression of FBXL10 represses TRAIL-induced apoptosis. Moreover, our results indicate that expression of FBXL10 functions via an NF-κB- dependent pathway, and TRAIL or proteasome inhibitors downregulate FBXL10 via inhibiting NF-κB signaling. Taken together, we find a novel functional role for FBXL10 as an anti-apoptotic molecule, and describe a new apoptotic-related pathway that involves NF-κB/FBXL10/c-Fos/c-FLIP. Therefore, silencing FBXL10 can help overcome resistant cancer cells for pro-apoptotic therapies.
KW - FBXL10
KW - NF-κB
KW - TRAIL
KW - apoptosis
KW - c-FLIP
KW - c-Fos
UR - http://www.scopus.com/inward/record.url?scp=79958797383&partnerID=8YFLogxK
U2 - 10.1038/cdd.2010.185
DO - 10.1038/cdd.2010.185
M3 - Article
C2 - 21252908
AN - SCOPUS:79958797383
SN - 1350-9047
VL - 18
SP - 1184
EP - 1195
JO - Cell Death and Differentiation
JF - Cell Death and Differentiation
IS - 7
ER -