Exuberant fibroblast activity compromises lung function via ADAMTS4

PALISI Pediatric Intensive Care Influenza (PICFLU) Investigators

Research output: Contribution to journalArticlepeer-review

102 Scopus citations

Abstract

Severe respiratory infections can result in acute respiratory distress syndrome (ARDS)1. There are no effective pharmacological therapies that have been shown to improve outcomes for patients with ARDS. Although the host inflammatory response limits spread of and eventually clears the pathogen, immunopathology is a major contributor to tissue damage and ARDS1,2. Here we demonstrate that respiratory viral infection induces distinct fibroblast activation states, which we term extracellular matrix (ECM)-synthesizing, damage-responsive and interferon-responsive states. We provide evidence that excess activity of damage-responsive lung fibroblasts drives lethal immunopathology during severe influenza virus infection. By producing ECM-remodelling enzymes—in particular the ECM protease ADAMTS4—and inflammatory cytokines, damage-responsive fibroblasts modify the lung microenvironment to promote robust immune cell infiltration at the expense of lung function. In three cohorts of human participants, the levels of ADAMTS4 in the lower respiratory tract were associated with the severity of infection with seasonal or avian influenza virus. A therapeutic agent that targets the ECM protease activity of damage-responsive lung fibroblasts could provide a promising approach to preserving lung function and improving clinical outcomes following severe respiratory infections.

Original languageEnglish
Pages (from-to)466-471
Number of pages6
JournalNature
Volume587
Issue number7834
DOIs
StatePublished - Nov 19 2020

Fingerprint

Dive into the research topics of 'Exuberant fibroblast activity compromises lung function via ADAMTS4'. Together they form a unique fingerprint.

Cite this