TY - JOUR
T1 - Exuberant fibroblast activity compromises lung function via ADAMTS4
AU - PALISI Pediatric Intensive Care Influenza (PICFLU) Investigators
AU - Boyd, David F.
AU - Allen, E. Kaitlynn
AU - Randolph, Adrienne G.
AU - Guo, Xi zhi J.
AU - Weng, Yunceng
AU - Sanders, Catherine J.
AU - Bajracharya, Resha
AU - Lee, Natalie K.
AU - Guy, Clifford S.
AU - Vogel, Peter
AU - Guan, Wenda
AU - Li, Yimin
AU - Liu, Xiaoqing
AU - Novak, Tanya
AU - Newhams, Margaret M.
AU - Fabrizio, Thomas P.
AU - Wohlgemuth, Nicholas
AU - Mourani, Peter M.
AU - Kong, Michele
AU - Sanders, Ronald C.
AU - Irby, Katherine
AU - Typpo, Katri
AU - Markovitz, Barry
AU - Cvijanovich, Natalie
AU - Flori, Heidi
AU - Schwarz, Adam
AU - Anas, Nick
AU - Mourani, Peter
AU - Czaja, Angela
AU - McLaughlin, Gwenn
AU - Paden, Matthew
AU - Tarquinio, Keiko
AU - Coates, Bria M.
AU - Pinto, Neethi
AU - Wardenburg, Juliane Bubeck
AU - Randolph, Adrienne G.
AU - Agan, Anna A.
AU - Novak, Tanya
AU - Newhams, Margaret M.
AU - Kurachek, Stephen C.
AU - Hartman, Mary E.
AU - Doctor, Allan
AU - Truemper, Edward J.
AU - Mahapatra, Sidharth
AU - Ackerman, Kate G.
AU - Daugherty, L. Eugene
AU - Hall, Mark W.
AU - Thomas, Neal
AU - Weiss, Scott L.
AU - Fitzgerald, Julie
N1 - Publisher Copyright:
© 2020, The Author(s), under exclusive licence to Springer Nature Limited.
PY - 2020/11/19
Y1 - 2020/11/19
N2 - Severe respiratory infections can result in acute respiratory distress syndrome (ARDS)1. There are no effective pharmacological therapies that have been shown to improve outcomes for patients with ARDS. Although the host inflammatory response limits spread of and eventually clears the pathogen, immunopathology is a major contributor to tissue damage and ARDS1,2. Here we demonstrate that respiratory viral infection induces distinct fibroblast activation states, which we term extracellular matrix (ECM)-synthesizing, damage-responsive and interferon-responsive states. We provide evidence that excess activity of damage-responsive lung fibroblasts drives lethal immunopathology during severe influenza virus infection. By producing ECM-remodelling enzymes—in particular the ECM protease ADAMTS4—and inflammatory cytokines, damage-responsive fibroblasts modify the lung microenvironment to promote robust immune cell infiltration at the expense of lung function. In three cohorts of human participants, the levels of ADAMTS4 in the lower respiratory tract were associated with the severity of infection with seasonal or avian influenza virus. A therapeutic agent that targets the ECM protease activity of damage-responsive lung fibroblasts could provide a promising approach to preserving lung function and improving clinical outcomes following severe respiratory infections.
AB - Severe respiratory infections can result in acute respiratory distress syndrome (ARDS)1. There are no effective pharmacological therapies that have been shown to improve outcomes for patients with ARDS. Although the host inflammatory response limits spread of and eventually clears the pathogen, immunopathology is a major contributor to tissue damage and ARDS1,2. Here we demonstrate that respiratory viral infection induces distinct fibroblast activation states, which we term extracellular matrix (ECM)-synthesizing, damage-responsive and interferon-responsive states. We provide evidence that excess activity of damage-responsive lung fibroblasts drives lethal immunopathology during severe influenza virus infection. By producing ECM-remodelling enzymes—in particular the ECM protease ADAMTS4—and inflammatory cytokines, damage-responsive fibroblasts modify the lung microenvironment to promote robust immune cell infiltration at the expense of lung function. In three cohorts of human participants, the levels of ADAMTS4 in the lower respiratory tract were associated with the severity of infection with seasonal or avian influenza virus. A therapeutic agent that targets the ECM protease activity of damage-responsive lung fibroblasts could provide a promising approach to preserving lung function and improving clinical outcomes following severe respiratory infections.
UR - http://www.scopus.com/inward/record.url?scp=85094679147&partnerID=8YFLogxK
U2 - 10.1038/s41586-020-2877-5
DO - 10.1038/s41586-020-2877-5
M3 - Article
C2 - 33116313
AN - SCOPUS:85094679147
SN - 0028-0836
VL - 587
SP - 466
EP - 471
JO - Nature
JF - Nature
IS - 7834
ER -