Abstract
Floquet (periodically driven) systems can give rise to unique nonequilibrium phases of matter without equilibrium analogs. The most prominent example is the realization of discrete time crystals. An intriguing question emerges: What other novel phases can manifest when the constraint of time periodicity is relaxed In this study, we explore quantum systems subjected to a quasiperiodic drive. Leveraging a strongly interacting spin ensemble in diamond, we identify the emergence of long-lived discrete time quasicrystals. Unlike conventional time crystals, time quasicrystals exhibit robust subharmonic responses at multiple incommensurate frequencies. Furthermore, we show that the multifrequency nature of the quasiperiodic drive allows for the formation of diverse patterns associated with different discrete time quasicrystalline phases. Our findings demonstrate the existence of nonequilibrium phases in quasi-Floquet settings, significantly broadening the catalog of novel phenomena in driven many-body quantum systems.
Original language | English |
---|---|
Article number | 011055 |
Journal | Physical Review X |
Volume | 15 |
Issue number | 1 |
DOIs | |
State | Published - Jan 2025 |