TY - JOUR
T1 - Exome sequencing identifies a missense variant in efemp1 co-segregating in a family with autosomal dominant primary open-angle glaucoma
AU - Mackay, Donna S.
AU - Bennett, Thomas M.
AU - Shiels, Alan
N1 - Publisher Copyright:
© 2015 Mackay et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2015/7/10
Y1 - 2015/7/10
N2 - Primary open-angle glaucoma (POAG) is a clinically important and genetically heterogeneous cause of progressive vision loss as a result of retinal ganglion cell death. Here we have utilized trio-based, whole-exome sequencing to identify the genetic defect underlying an autosomal dominant form of adult-onset POAG segregating in an African-American family. Exome sequencing identified a novel missense variant (c.418C>T, p.Arg140Trp) in exon-5 of the gene coding for epidermal growth factor (EGF) containing fibulin-like extracellular matrix protein 1 (EFEMP1) that co-segregated with disease in the family. Linkage and haplotype analyses with microsatellite markers indicated that the disease interval overlapped a known POAG locus (GLC1H) on chromosome 2p. The p.Arg140Trp substitution was predicted in silico to have damaging effects on protein function and transient expression studies in cultured cells revealed that the Trp140-mutant protein exhibited increased intracellular accumulation compared with wild-type EFEMP1. In situ hybridization of the mouse eye with oligonucleotide probes detected the highest levels of EFEMP1 transcripts in the ciliary body, cornea, inner nuclear layer of the retina, and the optic nerve head. The recent finding that a common variant near EFEMP1 was associated with optic nerve-head morphology supports the possibility that the EFEMP1 variant identified in this POAG family may be pathogenic.
AB - Primary open-angle glaucoma (POAG) is a clinically important and genetically heterogeneous cause of progressive vision loss as a result of retinal ganglion cell death. Here we have utilized trio-based, whole-exome sequencing to identify the genetic defect underlying an autosomal dominant form of adult-onset POAG segregating in an African-American family. Exome sequencing identified a novel missense variant (c.418C>T, p.Arg140Trp) in exon-5 of the gene coding for epidermal growth factor (EGF) containing fibulin-like extracellular matrix protein 1 (EFEMP1) that co-segregated with disease in the family. Linkage and haplotype analyses with microsatellite markers indicated that the disease interval overlapped a known POAG locus (GLC1H) on chromosome 2p. The p.Arg140Trp substitution was predicted in silico to have damaging effects on protein function and transient expression studies in cultured cells revealed that the Trp140-mutant protein exhibited increased intracellular accumulation compared with wild-type EFEMP1. In situ hybridization of the mouse eye with oligonucleotide probes detected the highest levels of EFEMP1 transcripts in the ciliary body, cornea, inner nuclear layer of the retina, and the optic nerve head. The recent finding that a common variant near EFEMP1 was associated with optic nerve-head morphology supports the possibility that the EFEMP1 variant identified in this POAG family may be pathogenic.
UR - http://www.scopus.com/inward/record.url?scp=84941341998&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0132529
DO - 10.1371/journal.pone.0132529
M3 - Article
C2 - 26162006
AN - SCOPUS:84941341998
SN - 1932-6203
VL - 10
JO - PloS one
JF - PloS one
IS - 7
M1 - e0132529
ER -