Abstract
Background: Rare variants in PLCG2 (p.P522R), ABI3 (p.S209F), and TREM2 (p.R47H, p.R62H) have been associated with late onset Alzheimer's disease (LOAD) risk in Caucasians. After the initial report, several studies have found positive results in cohorts of different ethnic background and with different phenotype. Objective: In this study, we aim to evaluate the association of rare coding variants in PLCG2, ABI3, and TREM2 with LOAD risk and their effect at different time points of the disease. Methods: We used a European American cohort to assess the association of the variants prior onset (using CSF Aβ42, tau, and pTau levels, and amyloid imaging as endophenotypes) and after onset (measured as rate of memory decline). Results: We confirm the association with LOAD risk of TREM2 p.R47H, p.R62H and ABI3 p.S209F variants, and the protective effect of PLCG2 p.P522R. In addition, ABI3 and TREM2 gene-sets showed significant association with LOAD risk. TREM2 p.R47H and PLCG2 p.P522R variants were also statistically associated with increase of amyloid imaging and AD progression, respectively. We did not observe any association of ABI3 p.S209F with any of the other AD endophenotypes. Conclusion: The results of this study highlight the importance of including biomarkers and alternative phenotypes to better understand the role of novel candidate genes with the disease.
Original language | English |
---|---|
Pages (from-to) | 1469-1482 |
Number of pages | 14 |
Journal | Journal of Alzheimer's Disease |
Volume | 77 |
Issue number | 4 |
DOIs | |
State | Published - 2020 |
Keywords
- ABI3
- PLCG2
- TREM2
- endophenotypes
- late onset Alzheimer's disease
- progression
Fingerprint
Dive into the research topics of 'Examination of the Effect of Rare Variants in TREM2, ABI3, and PLCG2 in LOAD through Multiple Phenotypes'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Journal of Alzheimer's Disease, Vol. 77, No. 4, 2020, p. 1469-1482.
Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - Examination of the Effect of Rare Variants in TREM2, ABI3, and PLCG2 in LOAD through Multiple Phenotypes
AU - Olive, Claudia
AU - Ibanez, Laura
AU - Farias, Fabiana H.Geraldo
AU - Wang, Fengxian
AU - Budde, John P.
AU - Norton, Joanne B.
AU - Gentsch, Jen
AU - Morris, John C.
AU - Li, Zeran
AU - Dube, Umber
AU - Del-Aguila, Jorge
AU - Bergmann, Kristy
AU - Bradley, Joseph
AU - Benitez, Bruno A.
AU - Harari, Oscar
AU - Fagan, Anne
AU - Ances, Beau
AU - Cruchaga, Carlos
AU - Fernandez, Maria Victoria
N1 - Funding Information: The CHARGE cohorts are supported in part by National Heart, Lung, and Blood Institute (NHLBI) infrastructure grant HL105756 (Psaty), RC2HL102419 (Boerwinkle) and the neurology working group is supported by the National Institute on Aging (NIA) R01 grant AG033193. The CHARGE cohorts participating in the ADSP include the following: Austrian Stroke Prevention Study (ASPS), ASPS-Family study, and the Prospective Dementia Registry-Austria (ASPS/PRODEM-Aus), the Atherosclerosis Risk in Communities (ARIC) Study, the Cardiovascular Health Study (CHS), the Erasmus Rucphen Family Study (ERF), the Framingham Heart Study (FHS), and the Rotterdam Study (RS). ASPS is funded by the Austrian Science Fond (FWF) grant number P20545-P05 and P13180 and the Medical University of Graz. The ASPS-Fam is funded by the Austrian Science Fund (FWF) project I904),the EU Joint Programme -Neurodegenerative Disease Research (JPND) in frame of the BRIDGET project (Austria, Ministry of Science) and the Medical University of Graz and the Steiermärkische Krankenanstalten Gesellschaft. PRODEM-Austria is supported by the Austrian Research Promotion agency (FFG) (Project No. 827462) and by the Austrian National Bank (Anniversary Fund, project 15435. ARIC research is carried out as a collaborative study supported by NHLBI contracts (HHSN268201100005C, HHSN 268201100006C, HHSN268201100007C, HHSN2 68201100008C, HHSN268201100009C, HHSN26 8201100010C, HHSN268201100011C, and HHS N268201100012C). Neurocognitive data in AR IC is collected by U01 2U01HL096812, 2U01H L096814, 2U01HL096899, 2U01HL096902, 2U01 HL096917 from the NIH (NHLBI, NINDS, NIA and NIDCD), and with previous brain MRI examinations funded by R01-HL70825 from the NHLBI. CHS research was supported by contracts HHSN268201200036C, HHSN268200800007C, N0 1HC55222, N01HC85079, N01HC85080, N01H C85081, N01HC85082, N01HC85083, N01HC 85086, and grants U01HL080295 and U01HL130114 from the NHLBI with additional contribution from the National Institute of Neurological Disorders and Stroke (NINDS). Additional support was provided by R01AG023629, R01AG15928, and R01AG20098 from the NIA. FHS research is supported by NHLBI contracts N01-HC-25195 and HHSN268201500001I. This study was also supported by additional grants from the NIA (R01s AG054076, AG049607 and AG033040 and NINDS (R01 NS017950). The ERF study as a part of EUROSPAN (European Special Populations Research Network) was supported by European Commission FP6 STRP grant number 018947 (LSHG-CT-2006-01947) and also received funding from the European Community’s Seventh Frame-work Programme (FP7/2007-2013)/grant agreement HEALTH-F4-2007-201413 by the European Commission under the programme “Quality of Life and Management of the Living Resources” of 5th Framework Programme (no. QLG2-CT-2002-01254). High-throughput analysis of the ERF data was supported by a joint grant from the Netherlands Organization for Scientific Research and the Russian Foundation for Basic Research (NWO-RFBR 047.017.043). The Rotterdam Study is funded by Erasmus Medical Center and Erasmus University, Rotterdam, the Netherlands Organization for Health Research and Development (ZonMw), the Research Institute for Diseases in the Elderly (RIDE), the Ministry of Education, Culture and Science, the Ministry for Health, Welfare and Sports, the European Commission (DG XII), and the municipality of Rotterdam. Genetic data sets are also supported by the Netherlands Organization of Scientific Research NWO Investments (175.010.2005.011, 911-03-012), the Genetic Laboratory of the Department of Internal Medicine, Erasmus MC, the Research Institute for Diseases in the Elderly (014-93-015; RIDE2), and the Netherlands Genomics Initiative (NGI)/Netherlands Organization for Scientific Research (NWO) Netherlands Consortium for Healthy Aging (NCHA), project 050-060-810. All studies are grateful to their participants, faculty and staff. The content of these manuscripts is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or the U.S. Department of Health and Human Services. Funding Information: The Alzheimer’s Disease Sequencing Project (ADSP) is comprised of two Alzheimer’s Disease (AD) genetics consortia and three National Human Genome Research Institute (NHGRI) funded Large Scale Sequencing and Analysis Centers (LSAC). The two AD genetics consortia are the Alzheimer’s Disease Genetics Consortium (ADGC) funded by NIA (U01 AG032984), and the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) funded by NIA (R01 AG0 33193), the National Heart, Lung, and Blood Institute (NHLBI), other National Institute of Health (NIH) institutes and other foreign governmental and nongovernmental organizations. The Discovery Phase analysis of sequence data is supported through UF1AG047133 (to Drs. Schellen-berg, Farrer, Pericak-Vance, Mayeux, and Haines); U01AG049505 to Dr. Seshadri; U01AG049506 to Dr. Boerwinkle; U01AG049507 to Dr. Wijsman; and U01AG049508 to Dr. Goate and the Discovery Extension Phase analysis is supported through U01AG052411 to Dr. Goate, U01AG052410 to Dr. Pericak-Vance and U01 AG052409 to Drs. Seshadri and Fornage. Data generation and harmonization in the Follow-up Phases is supported by U54AG052427 (to Drs. Schellenberg and Wang). Funding Information: This work was supported by grants from the NIH to C. Cruchaga (R01AG044546, P01AG003991, RF1AG053303, RF1AG058501, U01AG058922) and to M.V.F (1K99AG061281-01). C. Cruchaga was also supported by the Alzheimer’s Association (NIRG-11-200110, BAND-14-338165, AARG-16-441560, and BFG-15-362540). The recruitment and clinical characterization of research participants at Washington University was supported by NIH P50 AG05681, P01 AG03991, and P01 AG026276. Funding Information: Biological samples and associated phenotypic data used in primary data analyses were stored at Study Investigators institutions, and at the National Cell Repository for Alzheimer’s Disease (NCRAD, U24AG021886) at Indiana University funded by NIA. Associated Phenotypic Data used in primary and secondary data analyses were provided by Study Investigators, the NIA funded Alzheimer’s Disease Centers (ADCs), and the National Alzheimer’s Coordinating Center (NACC, U01AG016976) and the National Institute on Aging Genetics of Alzheimer’s Disease Data Storage Site (NIAGADS, U24AG041689) at the University of Pennsylvania, funded by NIA, and at the Database for Genotypes and Phenotypes (dbGaP) funded by NIH. This research was supported in part by the Intramural Research Program of the National Institutes of health, National Library of Medicine. Contributors to the Genetic Analysis Data included Study Investigators on projects that were individually funded by NIA, and other NIH institutes, and by private U.S. organizations, or foreign governmental or nongovernmental organizations. Funding Information: We thank all participants and their families for their commitment and dedication to helping advance research into the early detection and causation of AD. This work was supported by access to the equipment made possible by the Hope Center for Neurological Disorders, and the Departments of Neurology and Psychiatry at Washington University School of Medicine. The authors gratefully acknowledge the study subjects for their participation and the many researchers whose efforts contributed to the assembly and characterization of these datasets. Publisher Copyright: © 2020-IOS Press and the authors. All rights reserved.
PY - 2020
Y1 - 2020
N2 - Background: Rare variants in PLCG2 (p.P522R), ABI3 (p.S209F), and TREM2 (p.R47H, p.R62H) have been associated with late onset Alzheimer's disease (LOAD) risk in Caucasians. After the initial report, several studies have found positive results in cohorts of different ethnic background and with different phenotype. Objective: In this study, we aim to evaluate the association of rare coding variants in PLCG2, ABI3, and TREM2 with LOAD risk and their effect at different time points of the disease. Methods: We used a European American cohort to assess the association of the variants prior onset (using CSF Aβ42, tau, and pTau levels, and amyloid imaging as endophenotypes) and after onset (measured as rate of memory decline). Results: We confirm the association with LOAD risk of TREM2 p.R47H, p.R62H and ABI3 p.S209F variants, and the protective effect of PLCG2 p.P522R. In addition, ABI3 and TREM2 gene-sets showed significant association with LOAD risk. TREM2 p.R47H and PLCG2 p.P522R variants were also statistically associated with increase of amyloid imaging and AD progression, respectively. We did not observe any association of ABI3 p.S209F with any of the other AD endophenotypes. Conclusion: The results of this study highlight the importance of including biomarkers and alternative phenotypes to better understand the role of novel candidate genes with the disease.
AB - Background: Rare variants in PLCG2 (p.P522R), ABI3 (p.S209F), and TREM2 (p.R47H, p.R62H) have been associated with late onset Alzheimer's disease (LOAD) risk in Caucasians. After the initial report, several studies have found positive results in cohorts of different ethnic background and with different phenotype. Objective: In this study, we aim to evaluate the association of rare coding variants in PLCG2, ABI3, and TREM2 with LOAD risk and their effect at different time points of the disease. Methods: We used a European American cohort to assess the association of the variants prior onset (using CSF Aβ42, tau, and pTau levels, and amyloid imaging as endophenotypes) and after onset (measured as rate of memory decline). Results: We confirm the association with LOAD risk of TREM2 p.R47H, p.R62H and ABI3 p.S209F variants, and the protective effect of PLCG2 p.P522R. In addition, ABI3 and TREM2 gene-sets showed significant association with LOAD risk. TREM2 p.R47H and PLCG2 p.P522R variants were also statistically associated with increase of amyloid imaging and AD progression, respectively. We did not observe any association of ABI3 p.S209F with any of the other AD endophenotypes. Conclusion: The results of this study highlight the importance of including biomarkers and alternative phenotypes to better understand the role of novel candidate genes with the disease.
KW - ABI3
KW - PLCG2
KW - TREM2
KW - endophenotypes
KW - late onset Alzheimer's disease
KW - progression
UR - http://www.scopus.com/inward/record.url?scp=85093892657&partnerID=8YFLogxK
U2 - 10.3233/JAD-200019
DO - 10.3233/JAD-200019
M3 - Article
C2 - 32894242
AN - SCOPUS:85093892657
SN - 1387-2877
VL - 77
SP - 1469
EP - 1482
JO - Journal of Alzheimer's Disease
JF - Journal of Alzheimer's Disease
IS - 4
ER -