Evolving Wallerian degeneration after transient retinal ischemia in mice characterized by diffusion tensor imaging

Shu Wei Sun, Hsiao Fang Liang, Anne H. Cross, Sheng Kwei Song

Research output: Contribution to journalArticle

154 Scopus citations

Abstract

Wallerian degeneration plays a significant role in many central nervous system (CNS) diseases. Tracking the progression of Wallerian degeneration may provide better understanding of the evolution of many CNS diseases. In this study, a 28-day longitudinal in vivo DTI of optic nerve (ON) and optic tract (OT) was conducted to evaluate the temporal and spatial evolution of Wallerian degeneration resulting from the transient retinal ischemia. At 3-28 days after ischemia, ipsilateral ON and contralateral OT showed significant reduction in axial diffusivity (32-40% and 21-29% respectively) suggestive of axonal damage. Both ON and OT showed significant increase in radial diffusivity, 200-290% and 58-65% respectively, at 9-28 days suggestive of myelin damage. Immunohistochemistry of phosphorylated neurofilament (pNF) and myelin basic protein (MBP) was performed to assess axonal and myelin integrities validating the DTI findings. Both DTI and immunohistochemistry detected that transient retinal ischemia caused more severe damage to ON than to OT. The current results suggest that axial and radial diffusivities are capable of reflecting the severity of axonal and myelin damage in mice as assessed using immunohistochemistry.

Original languageEnglish
Pages (from-to)1-10
Number of pages10
JournalNeuroImage
Volume40
Issue number1
DOIs
StatePublished - Mar 1 2008

Fingerprint Dive into the research topics of 'Evolving Wallerian degeneration after transient retinal ischemia in mice characterized by diffusion tensor imaging'. Together they form a unique fingerprint.

  • Cite this