Abstract
Introduction: To interpret data and update the traditional categorization of prostate cancer in order to help treating clinicians make more informed decisions. These updates include guidance regarding how to best use next generation imaging (NGI) with the caveat that the new imaging technologies are still a work in progress. Materials and methods: Literature review. Results: Critical goals in prostate cancer management include preventing or delaying emergence of distant metastases and progression to castration-resistant disease. Pathways for progression to metastatic castration-resistant prostate cancer (mCRPC) involve transitional states: nonmetastatic castration-resistant prostate cancer (nmCRPC), metastatic hormone-sensitive prostate cancer (mHSPC), and oligometastatic disease. Determination of clinical state depends in part on available imaging modalities. Currently, fluciclovine and gallium-68 (68Ga) prostate-specific membrane antigen (PSMA) positron emission tomography (PET)/computed tomography (CT) are the NGI approaches with the most favorable combination of availability, specificity, and sensitivity. PET imaging can be used to help guide treatment selection in most patients. NGI can help determine patients who are candidates for new treatments, most notably (next-generation androgen antagonists, eg, apalutamide, enzalutamide, darolutamide), that can delay progression to advanced disease. Conclusions: It is important to achieve a consensus on new and more easily understood terminology to clearly and effectively describe prostate cancer and its progression to health care professionals and patients. It is also important that description of disease states make clear the need to initiate appropriate treatment. This may be particularly important for disease in transition to mCRPC.
Original language | English |
---|---|
Pages (from-to) | 10352-10362 |
Number of pages | 11 |
Journal | Canadian Journal of Urology |
Volume | 27 |
Issue number | 5 |
State | Published - 2020 |
Keywords
- Androgen antagonist
- Biomarker
- Imaging
- Metastasis
- Sequencing