TY - JOUR
T1 - Evidence for MR1 antigen presentation to mucosal-associated invariant T cells
AU - Huang, Shouxiong
AU - Gilfillan, Susan
AU - Cella, Marina
AU - Miley, Michael J.
AU - Lantz, Olivier
AU - Lybarger, Lonnie
AU - Fremont, Daved H.
AU - Hansen, Ted H.
PY - 2005/6/3
Y1 - 2005/6/3
N2 - The novel class Ib molecule MR1 is highly conserved in mammals, particularly in its α1/α2 domains. Recent studies demonstrated that MR1 expression is required for development and expansion of a small population of T cells expressing an invariant T cell receptor (TCR) α chain called mucosal-associated invariant T (MAIT) cells. Despite these intriguing properties it has been difficult to determine whether MR1 expression and MAIT cell recognition is ligand-dependent. To address these outstanding questions, monoclonal antibodies were produced in MR1 knock-out mice immunized with recombinant MR1 protein, and a series of MR1 mutations were generated at sites previously shown to disrupt the ability of class Ia molecules to bind peptide or TCR. Here we show that 1) MR1 molecules are detected by monoclonal antibodies in either an open or folded conformation that correlates precisely with peptide-induced conformational changes in class Ia molecules, 2) only the folded MR1 conformer activated 2/2 MAIT hybridoma cells tested, 3) the pattern of MAIT cell activation by the MR1 mutants implies the MR1/TCR orientation is strikingly similar to published major histocompatibility complex/ αβTCR engagements, 4) all the MR1 mutations tested and found to severely reduce surface expression of folded molecules were located in the putative ligand binding groove, and 5) certain groove mutants of MR1 that are highly expressed on the cell surface disrupt MAIT cell activation. These combined data strongly support the conclusion that MR1 has an antigen presentation function.
AB - The novel class Ib molecule MR1 is highly conserved in mammals, particularly in its α1/α2 domains. Recent studies demonstrated that MR1 expression is required for development and expansion of a small population of T cells expressing an invariant T cell receptor (TCR) α chain called mucosal-associated invariant T (MAIT) cells. Despite these intriguing properties it has been difficult to determine whether MR1 expression and MAIT cell recognition is ligand-dependent. To address these outstanding questions, monoclonal antibodies were produced in MR1 knock-out mice immunized with recombinant MR1 protein, and a series of MR1 mutations were generated at sites previously shown to disrupt the ability of class Ia molecules to bind peptide or TCR. Here we show that 1) MR1 molecules are detected by monoclonal antibodies in either an open or folded conformation that correlates precisely with peptide-induced conformational changes in class Ia molecules, 2) only the folded MR1 conformer activated 2/2 MAIT hybridoma cells tested, 3) the pattern of MAIT cell activation by the MR1 mutants implies the MR1/TCR orientation is strikingly similar to published major histocompatibility complex/ αβTCR engagements, 4) all the MR1 mutations tested and found to severely reduce surface expression of folded molecules were located in the putative ligand binding groove, and 5) certain groove mutants of MR1 that are highly expressed on the cell surface disrupt MAIT cell activation. These combined data strongly support the conclusion that MR1 has an antigen presentation function.
UR - http://www.scopus.com/inward/record.url?scp=20444379258&partnerID=8YFLogxK
U2 - 10.1074/jbc.M501087200
DO - 10.1074/jbc.M501087200
M3 - Article
C2 - 15802267
AN - SCOPUS:20444379258
SN - 0021-9258
VL - 280
SP - 21183
EP - 21193
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 22
ER -