TY - JOUR
T1 - Evaluation of proinsulin(F25D) as a targeting ligand for insulin-binding B cells in autoimmune diabetes
AU - Apley, Kyle D.
AU - Bass, Lindsay E.
AU - King, Jaylyn
AU - Downes, Grant
AU - Wang, Kristen
AU - Forchetti, Mason V.
AU - Moore, Daniel J.
AU - Kendall, Peggy
AU - Bonami, Rachel H.
AU - Berkland, Cory J.
N1 - Publisher Copyright:
© Controlled Release Society 2025.
PY - 2025
Y1 - 2025
N2 - Insulin-binding B cells are implicated in Type 1 Diabetes (T1D) pathology. Antigen-specific immunotherapy (ASIT) holds promise in T1D. However, ASIT-targeted suppression of insulin-binding B cells is hampered by insulin’s hormonal activity and the resulting binding and endocytosis of insulin by insulin receptors (INSR). To evaluate ASIT strategies that target insulin-binding B cells in vivo, non-hormonally active insulin variants are needed. In this work, we aimed to improve upon prior non-hormonal insulin variants by making mutations to the insulin precursor, proinsulin, and including a c-terminal sortase (SrtA) tag (LPETGGHG) to enable facile site-selective bioconjugation to scaffolds or payloads. Of the insulin variants investigated that retained low-nM binding to the murine-derived insulin autoantibody mAb 125, proinsulin(F25D)-SrtA had the lowest INSR binding and activity and the greatest fibrillation resistance. Compared to desoctapeptide insulin, a previously proposed non-hormonal insulin variant, proinsulin(F25D)-SrtA demonstrated 50-fold lower INSR binding and 100-fold greater fibrillation lag time. However, insulin(F25D)-SrtA bound to the anti-insulin antibody 12M4 isolated from a presymptomatic T1D individual, whereas proinsulin(F25D)-SrtA and desoctapeptide insulin did not, highlighting the potential for anti-insulin B cells to develop in human T1D that would escape this ASIT moiety. The characteristics of proinsulin(F25D)-SrtA make it a well-suited non-hormonal insulin variant for insulin-binding B cell targeting and warrants additional study with other anti-insulin B cell specificities derived from T1D individuals.
AB - Insulin-binding B cells are implicated in Type 1 Diabetes (T1D) pathology. Antigen-specific immunotherapy (ASIT) holds promise in T1D. However, ASIT-targeted suppression of insulin-binding B cells is hampered by insulin’s hormonal activity and the resulting binding and endocytosis of insulin by insulin receptors (INSR). To evaluate ASIT strategies that target insulin-binding B cells in vivo, non-hormonally active insulin variants are needed. In this work, we aimed to improve upon prior non-hormonal insulin variants by making mutations to the insulin precursor, proinsulin, and including a c-terminal sortase (SrtA) tag (LPETGGHG) to enable facile site-selective bioconjugation to scaffolds or payloads. Of the insulin variants investigated that retained low-nM binding to the murine-derived insulin autoantibody mAb 125, proinsulin(F25D)-SrtA had the lowest INSR binding and activity and the greatest fibrillation resistance. Compared to desoctapeptide insulin, a previously proposed non-hormonal insulin variant, proinsulin(F25D)-SrtA demonstrated 50-fold lower INSR binding and 100-fold greater fibrillation lag time. However, insulin(F25D)-SrtA bound to the anti-insulin antibody 12M4 isolated from a presymptomatic T1D individual, whereas proinsulin(F25D)-SrtA and desoctapeptide insulin did not, highlighting the potential for anti-insulin B cells to develop in human T1D that would escape this ASIT moiety. The characteristics of proinsulin(F25D)-SrtA make it a well-suited non-hormonal insulin variant for insulin-binding B cell targeting and warrants additional study with other anti-insulin B cell specificities derived from T1D individuals.
UR - http://www.scopus.com/inward/record.url?scp=105005998725&partnerID=8YFLogxK
U2 - 10.1007/s13346-025-01869-x
DO - 10.1007/s13346-025-01869-x
M3 - Article
C2 - 40402465
AN - SCOPUS:105005998725
SN - 2190-393X
JO - Drug Delivery and Translational Research
JF - Drug Delivery and Translational Research
ER -