Background: Breast implant-Associated anaplastic large cell lymphoma (BIA-ALCL) is a rare malignancy originating from the periprosthetic capsule of a textured, most often macrotextured, breast implant. Identified in women whose indications for breast implants can be either aesthetic or reconstructive, the genomic underpinnings of this disease are only beginning to be elucidated. Objectives: The aim of this study was to evaluate the exomes, and in some cases the entire genome, of patients with BIA-ALCL. Specific attention was paid to copy number alterations, chromosomal translocations, and other genomic abnormalities overrepresented in patients with BIA-ALCL. Methods: Whole-exome sequencing was performed on 6 patients, and whole-genome sequencing on 3 patients, with the Illumina NovaSeq 6000 sequencer. Data were analyzed with the Illumina DRAGEN Bio-IT Platform and the ChromoSeq pipeline. The Pathseq Genome Analysis Toolkit pipeline was used to detect the presence of microbial genomes in the sequenced samples. Results: Two cases with STAT3 mutations and 2 cases with NRAS mutations were noted. A critically deleted 7-Mb region was identified at the 11q22.3 region of chromosome 11, and multiple nonrecurrent chromosomal rearrangements were identified by whole-genome sequencing. Recurrent gene-level rearrangements, however, were not identified. None of the samples showed evidence of potential microbial pathogens. Conclusions: Although no recurrent mutations were identified, this study identified mutations in genes not previously reported with BIA-ALCL or other forms of ALCL. Furthermore, not previously reported with BIA-ALCL, 11q22.3 deletions were consistent across whole-genome sequencing cases and present in some exomes.

Original languageEnglish
Pages (from-to)318-328
Number of pages11
JournalAesthetic surgery journal
Issue number3
StatePublished - Mar 1 2023


Dive into the research topics of 'Evaluation of Breast Implant-Associated Anaplastic Large Cell Lymphoma with Whole Exome and Genome Sequencing'. Together they form a unique fingerprint.

Cite this