ETV4 and ETV5 drive synovial sarcoma through cell cycle and DUX4 embryonic pathway control

Joanna DeSalvo, Yuguang Ban, Luyuan Li, Xiaodian Sun, Zhijie Jiang, Darcy A. Kerr, Mahsa Khanlari, Maria Boulina, Mario R. Capecchi, Juha M. Partanen, Lin Chen, Tadashi Kondo, David M. Ornitz, Jonathan C. Trent, Josiane E. Eid

Research output: Contribution to journalArticlepeer-review

19 Scopus citations

Abstract

Synovial sarcoma is an aggressive malignancy with no effective treatments for patients with metastasis. The synovial sarcoma fusion SS18-SSX, which recruits the SWI/SNF-BAF chromatin remodeling and polycomb repressive complexes, results in epigenetic activation of FGF receptor (FGFR) signaling. In genetic FGFR-knockout models, culture, and xenograft synovial sarcoma models treated with the FGFR inhibitor BGJ398, we show that FGFR1, FGFR2, and FGFR3 were crucial for tumor growth. Transcriptome analyses of BGJ398-treated cells and histological and expression analyses of mouse and human synovial sarcoma tumors revealed prevalent expression of two ETS factors and FGFR targets, ETV4 and ETV5. We further demonstrate that ETV4 and ETV5 acted as drivers of synovial sarcoma growth, most likely through control of the cell cycle. Upon ETV4 and ETV5 knockdown, we observed a striking upregulation of DUX4 and its transcriptional targets that activate the zygotic genome and drive the atrophy program in facioscapulohumeral dystrophy patients. In addition to demonstrating the importance of inhibiting all three FGFRs, the current findings reveal potential nodes of attack for the cancer with the discovery of ETV4 and ETV5 as appropriate biomarkers and molecular targets, and activation of the embryonic DUX4 pathway as a promising approach to block synovial sarcoma tumors.

Original languageEnglish
Article numbere141908
JournalJournal of Clinical Investigation
Volume131
Issue number13
DOIs
StatePublished - Jul 2021

Fingerprint

Dive into the research topics of 'ETV4 and ETV5 drive synovial sarcoma through cell cycle and DUX4 embryonic pathway control'. Together they form a unique fingerprint.

Cite this