TY - JOUR
T1 - Estrogen predicts multimodal emotion recognition accuracy across the menstrual cycle
AU - Jang, Daisung
AU - Lybeck, Max
AU - Cortes, Diana Sanchez
AU - Elfenbein, Hillary Anger
AU - Laukka, Petri
N1 - Publisher Copyright:
© 2024 Jang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2024/10
Y1 - 2024/10
N2 - Researchers have proposed that variation in sex hormones across the menstrual cycle modulate the ability to recognize emotions in others. Existing research suggests that accuracy is higher during the follicular phase and ovulation compared to the luteal phase, but findings are inconsistent. Using a repeated measures design with a sample of healthy naturally cycling women (N = 63), we investigated whether emotion recognition accuracy varied between the follicular and luteal phases, and whether accuracy related to levels of estrogen (estradiol) and progesterone. Two tasks assessed recognition of a range of positive and negative emotions via brief video recordings presented in visual, auditory, and multimodal blocks, and non-linguistic vocalizations (e.g., laughter, sobs, and sighs). Multilevel models did not show differences in emotion recognition between cycle phases. However, coefficients for estrogen were significant for both emotion recognition tasks. Higher within-person levels of estrogen predicted lower accuracy, whereas higher between-person estrogen levels predicted greater accuracy. This suggests that in general having higher estrogen levels increases accuracy, but that higher-than-usual estrogen at a given time decreases it. Within-person estrogen further interacted with cycle phase for both tasks and showed a quadratic relationship with accuracy for the multimodal task. In particular, women with higher levels of estrogen were more accurate in the follicular phase and middle of the menstrual cycle. We propose that the differing role of within- and between-person hormone levels could explain some of the inconsistency in previous findings.
AB - Researchers have proposed that variation in sex hormones across the menstrual cycle modulate the ability to recognize emotions in others. Existing research suggests that accuracy is higher during the follicular phase and ovulation compared to the luteal phase, but findings are inconsistent. Using a repeated measures design with a sample of healthy naturally cycling women (N = 63), we investigated whether emotion recognition accuracy varied between the follicular and luteal phases, and whether accuracy related to levels of estrogen (estradiol) and progesterone. Two tasks assessed recognition of a range of positive and negative emotions via brief video recordings presented in visual, auditory, and multimodal blocks, and non-linguistic vocalizations (e.g., laughter, sobs, and sighs). Multilevel models did not show differences in emotion recognition between cycle phases. However, coefficients for estrogen were significant for both emotion recognition tasks. Higher within-person levels of estrogen predicted lower accuracy, whereas higher between-person estrogen levels predicted greater accuracy. This suggests that in general having higher estrogen levels increases accuracy, but that higher-than-usual estrogen at a given time decreases it. Within-person estrogen further interacted with cycle phase for both tasks and showed a quadratic relationship with accuracy for the multimodal task. In particular, women with higher levels of estrogen were more accurate in the follicular phase and middle of the menstrual cycle. We propose that the differing role of within- and between-person hormone levels could explain some of the inconsistency in previous findings.
UR - http://www.scopus.com/inward/record.url?scp=85207185098&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0312404
DO - 10.1371/journal.pone.0312404
M3 - Article
C2 - 39436872
AN - SCOPUS:85207185098
SN - 1932-6203
VL - 19
JO - PloS one
JF - PloS one
IS - 10 October
M1 - e0312404
ER -