Abstract

A striking example of brain organisation is the stereotyped arrangement of cell preferences in the visual cortex for edges of particular orientations in the visual image. These 'orientation preference maps' appear to have remarkably consistent statistical properties across many species. However fine scale analysis of these properties requires the accurate reconstruction of maps from imaging data which is highly noisy. A new approach for solving this reconstruction problem is to use Bayesian Gaussian process methods, which produce more accurate results than classical techniques. However, so far this work has not considered the fact that maps for several other features of visual input coexist with the orientation preference map and that these maps have mutually dependent spatial arrangements. Here we extend the Gaussian process framework to the multiple output case, so that we can consider multiple maps simultaneously. We demonstrate that this improves reconstruction of multiple maps compared to both classical techniques and the single output approach, can encode the empirically observed relationships, and is easily extendible. This provides the first principled approach for studying the spatial relationships between feature maps in visual cortex.

Original languageEnglish
Article number7731172
Pages (from-to)1918-1928
Number of pages11
JournalIEEE Transactions on Pattern Analysis and Machine Intelligence
Volume39
Issue number10
DOIs
StatePublished - Oct 1 2017

Keywords

  • Gaussian processes
  • Multitask learning
  • Neuroimaging
  • Visual cortical maps

Fingerprint

Dive into the research topics of 'Estimating Cortical Feature Maps with Dependent Gaussian Processes'. Together they form a unique fingerprint.

Cite this