TY - JOUR
T1 - Essential control of the function of the striatopallidal neuron by pre-coupled complexes of adenosine A2A-dopamine D2 receptor heterotetramers and adenylyl cyclase
AU - Ferré, Sergi
AU - Bonaventura, Jordi
AU - Zhu, Wendy
AU - Hatcher-Solis, Candice
AU - Taura, Jaume
AU - Quiroz, César
AU - Cai, Ning Sheng
AU - Moreno, Estefanía
AU - Casadó-Anguera, Verónica
AU - Kravitz, Alexxai V.
AU - Thompson, Kimberly R.
AU - Tomasi, Dardo G.
AU - Navarro, Gemma
AU - Cordomí, Arnau
AU - Pardo, Leonardo
AU - Lluís, Carme
AU - Dessauer, Carmen W.
AU - Volkow, Nora D.
AU - Casadó, Vicent
AU - Ciruela, Francisco
AU - Logothetis, Diomedes E.
AU - Zwilling, Daniel
N1 - Publisher Copyright:
© 2018 Ferré, Bonaventura, Zhu, Hatcher-Solis, Taura, Quiroz, Cai, Moreno, Casadó-Anguera, Kravitz, Thompson, Tomasi, Navarro, Cordomí, Pardo, Lluís, Dessauer, Volkow, Casadó, Ciruela, Logothetis and Zwilling.
PY - 2018/4/9
Y1 - 2018/4/9
N2 - The central adenosine system and adenosine receptors play a fundamental role in the modulation of dopaminergic neurotransmission. This is mostly achieved by the strategic co-localization of different adenosine and dopamine receptor subtypes in the two populations of striatal efferent neurons, striatonigral and striatopallidal, that give rise to the direct and indirect striatal efferent pathways, respectively. With optogenetic techniques it has been possible to dissect a differential role of the direct and indirect pathways in mediating "Go" responses upon exposure to reward-related stimuli and "NoGo" responses upon exposure to non-rewarded or aversive-related stimuli, respectively, which depends on their different connecting output structures and their differential expression of dopamine and adenosine receptor subtypes. The striatopallidal neuron selectively expresses dopamine D2 receptors (D2R) and adenosine A2A receptors (A2AR), and numerous experiments using multiple genetic and pharmacological in vitro, in situ and in vivo approaches, demonstrate they can form A2AR-D2R heteromers. It was initially assumed that different pharmacological interactions between dopamine and adenosine receptor ligands indicated the existence of different subpopulations of A2AR and D2R in the striatopallidal neuron. However, as elaborated in the present essay, most evidence now indicates that all interactions can be explained with a predominant population of striatal A2AR-D2R heteromers forming complexes with adenylyl cyclase subtype 5 (AC5). The A2AR-D2R heteromer has a tetrameric structure, with two homodimers, which allows not only multiple allosteric interactions between different orthosteric ligands, agonists, and antagonists, but also the canonical Gs-Gi antagonistic interaction at the level of AC5. We present a model of the function of the A2AR-D2R heterotetramer-AC5 complex, which acts as an integrative device of adenosine and dopamine signals that determine the excitability and gene expression of the striatopallidal neurons. The model can explain most behavioral effects of A2AR and D2R ligands, including the psychostimulant effects of caffeine. The model is also discussed in the context of different functional striatal compartments, mainly the dorsal and the ventral striatum. The current accumulated knowledge of the biochemical properties of the A2AR-D2R heterotetramer-AC5 complex offers new therapeutic possibilities for Parkinson's disease, schizophrenia, SUD and other neuropsychiatric disorders with dysfunction of dorsal or ventral striatopallidal neurons.
AB - The central adenosine system and adenosine receptors play a fundamental role in the modulation of dopaminergic neurotransmission. This is mostly achieved by the strategic co-localization of different adenosine and dopamine receptor subtypes in the two populations of striatal efferent neurons, striatonigral and striatopallidal, that give rise to the direct and indirect striatal efferent pathways, respectively. With optogenetic techniques it has been possible to dissect a differential role of the direct and indirect pathways in mediating "Go" responses upon exposure to reward-related stimuli and "NoGo" responses upon exposure to non-rewarded or aversive-related stimuli, respectively, which depends on their different connecting output structures and their differential expression of dopamine and adenosine receptor subtypes. The striatopallidal neuron selectively expresses dopamine D2 receptors (D2R) and adenosine A2A receptors (A2AR), and numerous experiments using multiple genetic and pharmacological in vitro, in situ and in vivo approaches, demonstrate they can form A2AR-D2R heteromers. It was initially assumed that different pharmacological interactions between dopamine and adenosine receptor ligands indicated the existence of different subpopulations of A2AR and D2R in the striatopallidal neuron. However, as elaborated in the present essay, most evidence now indicates that all interactions can be explained with a predominant population of striatal A2AR-D2R heteromers forming complexes with adenylyl cyclase subtype 5 (AC5). The A2AR-D2R heteromer has a tetrameric structure, with two homodimers, which allows not only multiple allosteric interactions between different orthosteric ligands, agonists, and antagonists, but also the canonical Gs-Gi antagonistic interaction at the level of AC5. We present a model of the function of the A2AR-D2R heterotetramer-AC5 complex, which acts as an integrative device of adenosine and dopamine signals that determine the excitability and gene expression of the striatopallidal neurons. The model can explain most behavioral effects of A2AR and D2R ligands, including the psychostimulant effects of caffeine. The model is also discussed in the context of different functional striatal compartments, mainly the dorsal and the ventral striatum. The current accumulated knowledge of the biochemical properties of the A2AR-D2R heterotetramer-AC5 complex offers new therapeutic possibilities for Parkinson's disease, schizophrenia, SUD and other neuropsychiatric disorders with dysfunction of dorsal or ventral striatopallidal neurons.
KW - Adenosine A receptor
KW - Adenylyl cyclase
KW - Akinesia
KW - Apathy
KW - Caffeine
KW - Dopamine D receptor
KW - GPCR heteromers
KW - Striatopallidal neuron
UR - http://www.scopus.com/inward/record.url?scp=85045287293&partnerID=8YFLogxK
U2 - 10.3389/fphar.2018.00243
DO - 10.3389/fphar.2018.00243
M3 - Article
C2 - 29686613
AN - SCOPUS:85045287293
SN - 1663-9812
VL - 9
JO - Frontiers in Pharmacology
JF - Frontiers in Pharmacology
IS - APR
M1 - 243
ER -