TY - JOUR
T1 - Escherichia coli helicase II (UvrD) protein initiates DNA unwinding at nicks and blunt ends
AU - Runyon, G. T.
AU - Bear, D. G.
AU - Lohman, T. M.
PY - 1990
Y1 - 1990
N2 - The Escherichia coli uvrD gene product, helicase II, is required for both methyl-directed mismatch and uvrABC excision repair and is believed to function by unwinding duplex DNA. Initiation of unwinding may occur specifically at either a mismatch or a nick, although no direct evidence for this has previously been reported. It has recently been shown that helicase II can unwind fully duplex linear and nicked circular DNA with lengths of at least ~2700 base pairs in vitro; hence, a flanking region of single-stranded DNA is not required to initiate DNA unwinding. In studies with uniquely nicked duplex DNA, we present EM evidence that helicase II protein initiates DNA unwinding at the nick, with unwinding proceeding bidirectionally. We also show that helicase II protein initiates DNA unwinding at the blunt ends of linear DNA, rather than in internal regions. These data provide direct evidence that helicase II protein can initiate unwinding of duplex DNA at a nick, in the absence of auxiliary proteins. We propose that helicase II may initiate unwinding from a nick in a number of DNA repair processes.
AB - The Escherichia coli uvrD gene product, helicase II, is required for both methyl-directed mismatch and uvrABC excision repair and is believed to function by unwinding duplex DNA. Initiation of unwinding may occur specifically at either a mismatch or a nick, although no direct evidence for this has previously been reported. It has recently been shown that helicase II can unwind fully duplex linear and nicked circular DNA with lengths of at least ~2700 base pairs in vitro; hence, a flanking region of single-stranded DNA is not required to initiate DNA unwinding. In studies with uniquely nicked duplex DNA, we present EM evidence that helicase II protein initiates DNA unwinding at the nick, with unwinding proceeding bidirectionally. We also show that helicase II protein initiates DNA unwinding at the blunt ends of linear DNA, rather than in internal regions. These data provide direct evidence that helicase II protein can initiate unwinding of duplex DNA at a nick, in the absence of auxiliary proteins. We propose that helicase II may initiate unwinding from a nick in a number of DNA repair processes.
KW - DNA repair
KW - electron microscopy
KW - helicase
UR - http://www.scopus.com/inward/record.url?scp=0025127419&partnerID=8YFLogxK
U2 - 10.1073/pnas.87.16.6383
DO - 10.1073/pnas.87.16.6383
M3 - Article
C2 - 2166955
AN - SCOPUS:0025127419
VL - 87
SP - 6383
EP - 6387
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
SN - 0027-8424
IS - 16
ER -