TY - JOUR
T1 - Ergosterol promotes aggregation of natamycin in the yeast plasma membrane
AU - Szomek, Maria
AU - Akkerman, Vibeke
AU - Lauritsen, Line
AU - Walther, Hanna Loisa
AU - Juhl, Alice Dupont
AU - Thaysen, Katja
AU - Egebjerg, Jacob Marcus
AU - Covey, Douglas F.
AU - Lehmann, Max
AU - Wessig, Pablo
AU - Foster, Alexander J.
AU - Poolman, Bert
AU - Werner, Stephan
AU - Schneider, Gerd
AU - Müller, Peter
AU - Wüstner, Daniel
N1 - Publisher Copyright:
© 2024
PY - 2024/10
Y1 - 2024/10
N2 - Polyene macrolides are antifungal substances, which interact with cells in a sterol-dependent manner. While being widely used, their mode of action is poorly understood. Here, we employ ultraviolet-sensitive (UV) microscopy to show that the antifungal polyene natamycin binds to the yeast plasma membrane (PM) and causes permeation of propidium iodide into cells. Right before membrane permeability became compromised, we observed clustering of natamycin in the PM that was independent of PM protein domains. Aggregation of natamycin was paralleled by cell deformation and membrane blebbing as revealed by soft X-ray microscopy. Substituting ergosterol for cholesterol decreased natamycin binding and caused a reduced clustering of natamycin in the PM. Blocking of ergosterol synthesis necessitates sterol import via the ABC transporters Aus1/Pdr11 to ensure natamycin binding. Quantitative imaging of dehydroergosterol (DHE) and cholestatrienol (CTL), two analogues of ergosterol and cholesterol, respectively, revealed a largely homogeneous lateral sterol distribution in the PM, ruling out that natamycin binds to pre-assembled sterol domains. Depletion of sphingolipids using myriocin increased natamycin binding to yeast cells, likely by increasing the ergosterol fraction in the outer PM leaflet. Importantly, binding and membrane aggregation of natamycin was paralleled by a decrease of the dipole potential in the PM, and this effect was enhanced in the presence of myriocin. We conclude that ergosterol promotes binding and aggregation of natamycin in the yeast PM, which can be synergistically enhanced by inhibitors of sphingolipid synthesis.
AB - Polyene macrolides are antifungal substances, which interact with cells in a sterol-dependent manner. While being widely used, their mode of action is poorly understood. Here, we employ ultraviolet-sensitive (UV) microscopy to show that the antifungal polyene natamycin binds to the yeast plasma membrane (PM) and causes permeation of propidium iodide into cells. Right before membrane permeability became compromised, we observed clustering of natamycin in the PM that was independent of PM protein domains. Aggregation of natamycin was paralleled by cell deformation and membrane blebbing as revealed by soft X-ray microscopy. Substituting ergosterol for cholesterol decreased natamycin binding and caused a reduced clustering of natamycin in the PM. Blocking of ergosterol synthesis necessitates sterol import via the ABC transporters Aus1/Pdr11 to ensure natamycin binding. Quantitative imaging of dehydroergosterol (DHE) and cholestatrienol (CTL), two analogues of ergosterol and cholesterol, respectively, revealed a largely homogeneous lateral sterol distribution in the PM, ruling out that natamycin binds to pre-assembled sterol domains. Depletion of sphingolipids using myriocin increased natamycin binding to yeast cells, likely by increasing the ergosterol fraction in the outer PM leaflet. Importantly, binding and membrane aggregation of natamycin was paralleled by a decrease of the dipole potential in the PM, and this effect was enhanced in the presence of myriocin. We conclude that ergosterol promotes binding and aggregation of natamycin in the yeast PM, which can be synergistically enhanced by inhibitors of sphingolipid synthesis.
KW - Fluorescence
KW - Label-free imaging
KW - Membrane
KW - Polyene macrolide
KW - Sterol
UR - http://www.scopus.com/inward/record.url?scp=85194583285&partnerID=8YFLogxK
U2 - 10.1016/j.bbamem.2024.184350
DO - 10.1016/j.bbamem.2024.184350
M3 - Article
C2 - 38806103
AN - SCOPUS:85194583285
SN - 0005-2736
VL - 1866
JO - Biochimica et Biophysica Acta - Biomembranes
JF - Biochimica et Biophysica Acta - Biomembranes
IS - 7
M1 - 184350
ER -