Abstract
This work shows the feasibility of collecting linear accelerator beam data using just a 1-D water tank and automated couch movements with the goal to maximize the cost effectiveness in resource-limited clinical settings. Two commissioning datasets were acquired: (a) using a standard of practice 3D water tank scanning system (3DS) and (b) using a novel technique to translate a commercial TG-51 complaint 1D water tank via automated couch movements (1DS). The Extensible Markup Language (XML) was used to dynamically move the linear accelerator couch position (and thus the 1D tank) during radiation delivery for the acquisition of inline, crossline, and diagonal profiles. Both the 1DS and 3DS datasets were used to generate beam models (BM 1 DS and BM 3 DS ) in a commercial treatment planning system (TPS). 98.7% of 1DS measured points had a gamma value (2%/2 mm) < 1 when compared with the 3DS. Static jaw defined field and dynamic MLC field dose distribution comparisons for the TPS beam models BM 1 DS and BM 3 DS had 3D gamma values (2%/2 mm) < 1 for all 24,900,000 data points tested and >99.5% pass rate with gamma value (1%/1 mm) < 1. In conclusion, automated couch motions and a 1D scanning tank were used to collect commissioning beam data with accuracy comparable to traditionally acquired data using a 3D scanning system. TPS beam models generated directly from 1DS measured data were clinically equivalent to a model derived from 3DS data.
Original language | English |
---|---|
Pages (from-to) | 60-67 |
Number of pages | 8 |
Journal | Journal of applied clinical medical physics |
Volume | 19 |
Issue number | 6 |
DOIs | |
State | Published - Nov 2018 |
Keywords
- 1D Tank
- beam modeling
- beam scanning using XML
- linac commissioning