TY - JOUR
T1 - Epithelial cyclooxygenase-2 expression
T2 - A model for pathogenesis of colon cancer
AU - Arbabi, Saman
AU - Rosengart, Matthew R.
AU - Garcia, Iris
AU - Jelacic, Sandra
AU - Maier, Ronald V.
PY - 2001/5
Y1 - 2001/5
N2 - Background. Recent studies indicate a close relationship between cyclooxygense-2 (COX-2) expression and the pathogenesis of colorectal cancer, yet little information exists regarding the stimuli and pathways involved in COX-2 expression by the colonic epithelium. We studied the induction of COX-2 in response to such environmental stress as hyperosmolarity and lipopolysaccharide (LPS) in a human colon cell line. We further investigated the transduction cascades mediating COX-2 expression, focusing upon the mitogen-activated protein kinase pathways p38 and extracellular signal-regulated kinase (ERK). Materials and methods. Human colon cancer cells (Caco-2) were stimulated with increasing concentrations of sodium chloride (NaCl) or LPS. Total protein was extracted at different time points and subjected to Western blot analysis with antibodies to human COX-2, COX-1, or phospho-specific antibodies to ERK and p38. Results. LPS failed to induce COX-2 or COX-1 expression. Hyperosmolarity induced COX-2 expression by 2 h, with peak levels occurring at 6-8 h. NaCl at 40 and 100 mM induced a 2-fold and more than 50-fold increase in COX-2 expression, respectively; COX-1 expression was not affected. Hyperosmolarity induced both p38 and ERK activation within 30 min; however, only p38 inhibition attenuated osmotic-induced COX-2 expression; inhibition of ERK activation had no effect. Conclusions. Increase in osmolarity activates p38 and induces COX-2 expression in the colonic epithelium. The lack of response to LPS is teleologically expected of the colonic epithelium that is in constant contact with the fecal bacteria. This model also predicts that an increase in luminal osmolarity in the colon may induce COX-2 and thereby promote a neoplastic phenotype.
AB - Background. Recent studies indicate a close relationship between cyclooxygense-2 (COX-2) expression and the pathogenesis of colorectal cancer, yet little information exists regarding the stimuli and pathways involved in COX-2 expression by the colonic epithelium. We studied the induction of COX-2 in response to such environmental stress as hyperosmolarity and lipopolysaccharide (LPS) in a human colon cell line. We further investigated the transduction cascades mediating COX-2 expression, focusing upon the mitogen-activated protein kinase pathways p38 and extracellular signal-regulated kinase (ERK). Materials and methods. Human colon cancer cells (Caco-2) were stimulated with increasing concentrations of sodium chloride (NaCl) or LPS. Total protein was extracted at different time points and subjected to Western blot analysis with antibodies to human COX-2, COX-1, or phospho-specific antibodies to ERK and p38. Results. LPS failed to induce COX-2 or COX-1 expression. Hyperosmolarity induced COX-2 expression by 2 h, with peak levels occurring at 6-8 h. NaCl at 40 and 100 mM induced a 2-fold and more than 50-fold increase in COX-2 expression, respectively; COX-1 expression was not affected. Hyperosmolarity induced both p38 and ERK activation within 30 min; however, only p38 inhibition attenuated osmotic-induced COX-2 expression; inhibition of ERK activation had no effect. Conclusions. Increase in osmolarity activates p38 and induces COX-2 expression in the colonic epithelium. The lack of response to LPS is teleologically expected of the colonic epithelium that is in constant contact with the fecal bacteria. This model also predicts that an increase in luminal osmolarity in the colon may induce COX-2 and thereby promote a neoplastic phenotype.
KW - Carcinoma
KW - Colon
KW - Cyclooxygenase (COX)
KW - Epithelium
KW - Lipopolysaccharide
KW - Mitogen-activated protein kinase (MAPK)
KW - Neoplasm
KW - Osmolarity
KW - Rectum
KW - Signal transduction
UR - http://www.scopus.com/inward/record.url?scp=0035746437&partnerID=8YFLogxK
U2 - 10.1006/jsre.2001.6112
DO - 10.1006/jsre.2001.6112
M3 - Article
C2 - 11319881
AN - SCOPUS:0035746437
SN - 0022-4804
VL - 97
SP - 60
EP - 64
JO - Journal of Surgical Research
JF - Journal of Surgical Research
IS - 1
ER -