TY - JOUR
T1 - Epithelial Chloride Transport by CFTR Requires TMEM16A
AU - Benedetto, Roberta
AU - Ousingsawat, Jiraporn
AU - Wanitchakool, Podchanart
AU - Zhang, Yong
AU - Holtzman, Michael J.
AU - Amaral, Margarida
AU - Rock, Jason R.
AU - Schreiber, Rainer
AU - Kunzelmann, Karl
N1 - Publisher Copyright:
© 2017 The Author(s).
PY - 2017/12/1
Y1 - 2017/12/1
N2 - Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is the secretory chloride/bicarbonate channel in airways and intestine that is activated through ATP binding and phosphorylation by protein kinase A, but fails to operate in cystic fibrosis (CF). TMEM16A (also known as anoctamin 1, ANO1) is thought to function as the Ca2+ activated secretory chloride channel independent of CFTR. Here we report that tissue specific knockout of the TMEM16A gene in mouse intestine and airways not only eliminates Ca2+-Activated Cl- currents, but unexpectedly also abrogates CFTR-mediated Cl- secretion and completely abolishes cAMP-Activated whole cell currents. The data demonstrate fundamentally new roles of TMEM16A in differentiated epithelial cells: TMEM16A provides a mechanism for enhanced ER Ca2+ store release, possibly engaging Store Operated cAMP Signaling (SOcAMPS) and activating Ca2+ regulated adenylyl cyclases. TMEM16A is shown to be essential for proper activation and membrane expression of CFTR. This intimate regulatory relationship is the cause for the functional overlap of CFTR and Ca2+-dependent chloride transport.
AB - Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is the secretory chloride/bicarbonate channel in airways and intestine that is activated through ATP binding and phosphorylation by protein kinase A, but fails to operate in cystic fibrosis (CF). TMEM16A (also known as anoctamin 1, ANO1) is thought to function as the Ca2+ activated secretory chloride channel independent of CFTR. Here we report that tissue specific knockout of the TMEM16A gene in mouse intestine and airways not only eliminates Ca2+-Activated Cl- currents, but unexpectedly also abrogates CFTR-mediated Cl- secretion and completely abolishes cAMP-Activated whole cell currents. The data demonstrate fundamentally new roles of TMEM16A in differentiated epithelial cells: TMEM16A provides a mechanism for enhanced ER Ca2+ store release, possibly engaging Store Operated cAMP Signaling (SOcAMPS) and activating Ca2+ regulated adenylyl cyclases. TMEM16A is shown to be essential for proper activation and membrane expression of CFTR. This intimate regulatory relationship is the cause for the functional overlap of CFTR and Ca2+-dependent chloride transport.
UR - http://www.scopus.com/inward/record.url?scp=85030260813&partnerID=8YFLogxK
U2 - 10.1038/s41598-017-10910-0
DO - 10.1038/s41598-017-10910-0
M3 - Article
C2 - 28963502
AN - SCOPUS:85030260813
SN - 2045-2322
VL - 7
JO - Scientific reports
JF - Scientific reports
IS - 1
M1 - 12397
ER -