TY - JOUR
T1 - Epidermal growth factor receptors containing a single tyrosine in their C-terminal tail bind different effector molecules and are signaling-competent
AU - Gill, Kamaldeep
AU - Macdonald-Obermann, Jennifer L.
AU - Pike, Linda J.
N1 - Funding Information:
This work was supported by National Institutes of Health Grants R01 GM099695 and R01 GM108785 (to L. J. P.). The authors declare that they have no conflicts of interest with the contents of this article. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
PY - 2017/12/15
Y1 - 2017/12/15
N2 - The EGF receptor is a classic receptor tyrosine kinase. It contains nine tyrosines in its C-terminal tail, many of which are phosphorylated and bind proteins containing SH2 or phosphotyrosine-binding (PTB) domains. To determine how many and which tyrosines are required to enable EGF receptor-mediated signaling, we generated a series of EGF receptors that contained only one tyrosine in their C-terminal tail. Assays of the signaling capabilities of these single-Tyr EGF receptors indicated that they can activate a range of downstream signaling pathways, including MAP kinase and Akt. The ability of the single-Tyr receptors to signal correlated with their ability to bind Gab1 (Grb2-associated binding protein 1). However, Tyr-992 appeared to be almost uniquely required to observe activation of phospholipase Cy. These results demonstrate that multiply phosphorylated receptors are not required to support most EGF-stimulated signaling but identify Tyr-992 and its binding partners as a unique node within the network. We also studied the binding of the isolated SH2 domain of Grb2 (growth factor receptor-bound protein 2) and the isolated PTB domain of Shc (SHC adaptor protein) to the EGF receptor. Although these adapter proteins bound readily to wild-type EGF receptor, they bound poorly to the single-Tyr EGF receptors, even those that bound full-length Grb2 and Shc well. This suggests that in addition to pTyr-directed associations, secondary interactions between the tail and regions of the adapter proteins outside of the SH2/PTB domains are important for stabilizing the binding of Grb2 and Shc to the single-Tyr EGF receptors.
AB - The EGF receptor is a classic receptor tyrosine kinase. It contains nine tyrosines in its C-terminal tail, many of which are phosphorylated and bind proteins containing SH2 or phosphotyrosine-binding (PTB) domains. To determine how many and which tyrosines are required to enable EGF receptor-mediated signaling, we generated a series of EGF receptors that contained only one tyrosine in their C-terminal tail. Assays of the signaling capabilities of these single-Tyr EGF receptors indicated that they can activate a range of downstream signaling pathways, including MAP kinase and Akt. The ability of the single-Tyr receptors to signal correlated with their ability to bind Gab1 (Grb2-associated binding protein 1). However, Tyr-992 appeared to be almost uniquely required to observe activation of phospholipase Cy. These results demonstrate that multiply phosphorylated receptors are not required to support most EGF-stimulated signaling but identify Tyr-992 and its binding partners as a unique node within the network. We also studied the binding of the isolated SH2 domain of Grb2 (growth factor receptor-bound protein 2) and the isolated PTB domain of Shc (SHC adaptor protein) to the EGF receptor. Although these adapter proteins bound readily to wild-type EGF receptor, they bound poorly to the single-Tyr EGF receptors, even those that bound full-length Grb2 and Shc well. This suggests that in addition to pTyr-directed associations, secondary interactions between the tail and regions of the adapter proteins outside of the SH2/PTB domains are important for stabilizing the binding of Grb2 and Shc to the single-Tyr EGF receptors.
UR - http://www.scopus.com/inward/record.url?scp=85038409121&partnerID=8YFLogxK
U2 - 10.1074/jbc.M117.802553
DO - 10.1074/jbc.M117.802553
M3 - Article
C2 - 29074618
AN - SCOPUS:85038409121
SN - 0021-9258
VL - 292
SP - 20744
EP - 20755
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 50
ER -